ggerganov / llama.cpp

LLM inference in C/C++
MIT License
68.53k stars 9.85k forks source link

Running with Metal for llama-2-13b-chat.ggmlv3.q8_0.bin with -ngl throw unimplemented error #2508

Closed kechan closed 1 year ago

kechan commented 1 year ago

I compiled with "LLAMA_METAL=1 make" on M2 Max ./main -m ./models/13B/llama-2-13b-chat.ggmlv3.q8_0.bin -ngl 8

should at least not throw any error (I know I have to specify more specific params).

throw

GGML_ASSERT: ggml-metal.m:905: false && "not implemented" zsh: abort ./main -m ./models/13B/llama-2-13b-chat.ggmlv3.q8_0.bin --temp 0.0 -n -1 1.1

I am Apple M2 Max, got the weights from https://huggingface.co/TheBloke...

I tried q4 version and it worked. So is this not supported for q8?

ymcui commented 1 year ago

That's true. Q8_0 is not supported under Metal as of now. Same for Q5_0 and Q5_1.

clarkmcc commented 1 year ago

Just out of curiosity, is there a technical limitation to why these aren't supported, or have these just not been implemented?

ggerganov commented 1 year ago

No limitations - should be easy to support. PRs welcome

kechan commented 1 year ago

@ggerganov if this isn't too hard to do, I can try take a look if you give me some pointers, but I hadn't worked with c/c++ for many many years and extremely rusty. I would be interested to compare 70B q4 and q8, that's what prompted my post. Just want to check out how much quantization can degrade the biggest models.

alexshmmy commented 1 year ago

For me it works great the llama-2-13b-chat.ggmlv3.q8_0.bin in Mac M1 Max 64GB RAM with the pyllamacpp package and Python 3.9. After installing the package with pip install pyllamacpp just run a sample code:

from pyllamacpp.model import Model

input = "I want you to act as a physician. Explain what superconductors are."
model_path='./llama-2-13b-chat.ggmlv3.q8_0.bin'
model = Model(model_path)

for token in model.generate(input):
    print(token, end='', flush=True)

Output of code:

$python testLLM13B.py
llama.cpp: loading model from ./llama-2-13b-chat.ggmlv3.q8_0.bin
llama_model_load_internal: format     = ggjt v3 (latest)
llama_model_load_internal: n_vocab    = 32000
llama_model_load_internal: n_ctx      = 512
llama_model_load_internal: n_embd     = 5120
llama_model_load_internal: n_mult     = 256
llama_model_load_internal: n_head     = 40
llama_model_load_internal: n_layer    = 40
llama_model_load_internal: n_rot      = 128
llama_model_load_internal: ftype      = 7 (mostly Q8_0)
llama_model_load_internal: n_ff       = 13824
llama_model_load_internal: n_parts    = 1
llama_model_load_internal: model size = 13B
llama_model_load_internal: ggml ctx size =    0.09 MB
llama_model_load_internal: mem required  = 15237.95 MB (+ 3216.00 MB per state)
.
llama_init_from_file: kv self size  =  800.00 MB
 Explain their properties and the potential benefits they offer.
  Superconductors are materials that exhibit zero electrical resistance when cooled below a certain temperature, known as the critical temperature (Tc). This means that superconductors can conduct electricity with perfect efficiency and without any loss of energy.

The properties of superconductors include:

1. Zero electrical resistance: Superconductors have zero electrical resistance when cooled below Tc, which makes them ideal for high-power appli                                 as power transmission and storage.
2. Perfect diamagnetism: Superconductors expel magnetic fields when cooled below Tc, which makes them useful in MRI machines and other medical applications.
3. Quantum levitation: Superconductors can levitate above a magnet when cooled below Tc, which has potential applications in transportation and energy storage.
4. High-temperature superconductivity: Some superconductors have critical temperatures above the boiling point of liquid nitrogen (77 K), making them more practical for real-world applications.
The potential benefits of superconductors include:
1. More efficient power transmission and storage: Superconductors can transmit and store electricity with perfect efficiency, which could lead to significant energy savings and reduced carbon emissions.
2. Improved medical imaging: Superconducting magnets are used in MRI machines, which provide higher-resolution images and faster scan times than traditional magnets.
3. High-speed transportation: Superconductors could be used to create magnetic levitation trains that are faster and more efficient than conventional trains.
4. Enhanced security: Superconducting sensors can detect even slight changes in magnetic fields, which could be useful in security applications such as intrusion detection.
5. Energy storage: Superconductors could be used to store energy generated by renewable sources such as wind and solar power, which could help to reduce our reliance on fossil fuels.
Overall, superconductors have the potential to revolutionize a wide range of industries and provide significant benefits to society. However, more research is needed to fully understand their properties and potential applications.
TheSeamau5 commented 1 year ago

For me it works great the llama-2-13b-chat.ggmlv3.q8_0.bin in Mac M1 Max 64GB RAM with the pyllamacpp package and Python 3.9. After installing the package with pip install pyllamacpp just run a sample code:

from pyllamacpp.model import Model

input = "I want you to act as a physician. Explain what superconductors are."
model_path='./llama-2-13b-chat.ggmlv3.q8_0.bin'
model = Model(model_path)

for token in model.generate(input):
    print(token, end='', flush=True)

Output of code:

$python testLLM13B.py
llama.cpp: loading model from ./llama-2-13b-chat.ggmlv3.q8_0.bin
llama_model_load_internal: format     = ggjt v3 (latest)
llama_model_load_internal: n_vocab    = 32000
llama_model_load_internal: n_ctx      = 512
llama_model_load_internal: n_embd     = 5120
llama_model_load_internal: n_mult     = 256
llama_model_load_internal: n_head     = 40
llama_model_load_internal: n_layer    = 40
llama_model_load_internal: n_rot      = 128
llama_model_load_internal: ftype      = 7 (mostly Q8_0)
llama_model_load_internal: n_ff       = 13824
llama_model_load_internal: n_parts    = 1
llama_model_load_internal: model size = 13B
llama_model_load_internal: ggml ctx size =    0.09 MB
llama_model_load_internal: mem required  = 15237.95 MB (+ 3216.00 MB per state)
.
llama_init_from_file: kv self size  =  800.00 MB
 Explain their properties and the potential benefits they offer.
  Superconductors are materials that exhibit zero electrical resistance when cooled below a certain temperature, known as the critical temperature (Tc). This means that superconductors can conduct electricity with perfect efficiency and without any loss of energy.

The properties of superconductors include:

1. Zero electrical resistance: Superconductors have zero electrical resistance when cooled below Tc, which makes them ideal for high-power appli                                 as power transmission and storage.
2. Perfect diamagnetism: Superconductors expel magnetic fields when cooled below Tc, which makes them useful in MRI machines and other medical applications.
3. Quantum levitation: Superconductors can levitate above a magnet when cooled below Tc, which has potential applications in transportation and energy storage.
4. High-temperature superconductivity: Some superconductors have critical temperatures above the boiling point of liquid nitrogen (77 K), making them more practical for real-world applications.
The potential benefits of superconductors include:
1. More efficient power transmission and storage: Superconductors can transmit and store electricity with perfect efficiency, which could lead to significant energy savings and reduced carbon emissions.
2. Improved medical imaging: Superconducting magnets are used in MRI machines, which provide higher-resolution images and faster scan times than traditional magnets.
3. High-speed transportation: Superconductors could be used to create magnetic levitation trains that are faster and more efficient than conventional trains.
4. Enhanced security: Superconducting sensors can detect even slight changes in magnetic fields, which could be useful in security applications such as intrusion detection.
5. Energy storage: Superconductors could be used to store energy generated by renewable sources such as wind and solar power, which could help to reduce our reliance on fossil fuels.
Overall, superconductors have the potential to revolutionize a wide range of industries and provide significant benefits to society. However, more research is needed to fully understand their properties and potential applications.

Is this running in CPU or Metal? 8bit works fine on CPU

alexshmmy commented 1 year ago

So far, in my Mac M1 MAX 64GB ram, 10 cores cpu, 32 cores gpu:

Installation:

conda create -n llamaM1 python=3.9.16
conda activate llamaM1
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir
python testM1llama.py

Working code for M1 metal GPU:

from llama_cpp import Llama

model_path = './llama-2-13b-chat.ggmlv3.q4_0.bin'
lm = Llama(model_path,
             n_ctx = 2048,
             n_gpu_layers = 130)

output = lm("Give me a list of famous mathematicians between born from 1800 to 2000.",
              max_tokens = 1000, 
              stream = True)

for token in output:
    print(token['choices'][0]['text'], end='', flush=True)

Code output:

llama.cpp: loading model from ./llama-2-13b-chat.ggmlv3.q4_0.bin
llama_model_load_internal: format     = ggjt v3 (latest)
llama_model_load_internal: n_vocab    = 32000
llama_model_load_internal: n_ctx      = 2048
llama_model_load_internal: n_embd     = 5120
llama_model_load_internal: n_mult     = 256
llama_model_load_internal: n_head     = 40
llama_model_load_internal: n_head_kv  = 40
llama_model_load_internal: n_layer    = 40
llama_model_load_internal: n_rot      = 128
llama_model_load_internal: n_gqa      = 1
llama_model_load_internal: rnorm_eps  = 1.0e-06
llama_model_load_internal: n_ff       = 13824
llama_model_load_internal: freq_base  = 10000.0
llama_model_load_internal: freq_scale = 1
llama_model_load_internal: ftype      = 2 (mostly Q4_0)
llama_model_load_internal: model size = 13B
llama_model_load_internal: ggml ctx size =    0.11 MB
llama_model_load_internal: mem required  = 7477.72 MB (+ 1600.00 MB per state)
llama_new_context_with_model: kv self size  = 1600.00 MB
ggml_metal_init: allocating
ggml_metal_init: using MPS
ggml_metal_init: loading '/Users/miniforge3/envs/llamaM1/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'
ggml_metal_init: loaded kernel_add                            0x106d3d160
ggml_metal_init: loaded kernel_add_row                        0x106d3f350
ggml_metal_init: loaded kernel_mul                            0x106e05250
ggml_metal_init: loaded kernel_mul_row                        0x106e05a40
ggml_metal_init: loaded kernel_scale                          0x106e066a0
ggml_metal_init: loaded kernel_silu                           0x106e072e0
ggml_metal_init: loaded kernel_relu                           0x106e05ca0
ggml_metal_init: loaded kernel_gelu                           0x106e079c0
ggml_metal_init: loaded kernel_soft_max                       0x107204810
ggml_metal_init: loaded kernel_diag_mask_inf                  0x106e08830
ggml_metal_init: loaded kernel_get_rows_f16                   0x106e08a90
ggml_metal_init: loaded kernel_get_rows_q4_0                  0x106e09400
ggml_metal_init: loaded kernel_get_rows_q4_1                  0x106e09cd0
ggml_metal_init: loaded kernel_get_rows_q2_K                  0x106e0a3c0
ggml_metal_init: loaded kernel_get_rows_q3_K                  0x106e0aa90
ggml_metal_init: loaded kernel_get_rows_q4_K                  0x106e0b190
ggml_metal_init: loaded kernel_get_rows_q5_K                  0x106e0b890
ggml_metal_init: loaded kernel_get_rows_q6_K                  0x106e0bf90
ggml_metal_init: loaded kernel_rms_norm                       0x106e0c6b0
ggml_metal_init: loaded kernel_norm                           0x106e0ce20
ggml_metal_init: loaded kernel_mul_mat_f16_f32                0x106e0de10
ggml_metal_init: loaded kernel_mul_mat_q4_0_f32               0x106e0e620
ggml_metal_init: loaded kernel_mul_mat_q4_1_f32               0x12a7a4690
ggml_metal_init: loaded kernel_mul_mat_q2_K_f32               0x12a7a4cf0
ggml_metal_init: loaded kernel_mul_mat_q3_K_f32               0x12a7a5cc0
ggml_metal_init: loaded kernel_mul_mat_q4_K_f32               0x12a7a6480
ggml_metal_init: loaded kernel_mul_mat_q5_K_f32               0x12a7a6c10
ggml_metal_init: loaded kernel_mul_mat_q6_K_f32               0x12a7a7390
ggml_metal_init: loaded kernel_rope                           0x12a7a53f0
ggml_metal_init: loaded kernel_alibi_f32                      0x106d3e600
ggml_metal_init: loaded kernel_cpy_f32_f16                    0x106d3f860
ggml_metal_init: loaded kernel_cpy_f32_f32                    0x106d3fe30
ggml_metal_init: loaded kernel_cpy_f16_f16                    0x106d40fc0
ggml_metal_init: recommendedMaxWorkingSetSize = 49152.00 MB
ggml_metal_init: hasUnifiedMemory             = true
ggml_metal_init: maxTransferRate              = built-in GPU
llama_new_context_with_model: max tensor size =    87.89 MB
ggml_metal_add_buffer: allocated 'data            ' buffer, size =  6984.06 MB, ( 6984.52 / 49152.00)
ggml_metal_add_buffer: allocated 'eval            ' buffer, size =    12.00 MB, ( 6996.52 / 49152.00)
ggml_metal_add_buffer: allocated 'kv              ' buffer, size =  1602.00 MB, ( 8598.52 / 49152.00)
ggml_metal_add_buffer: allocated 'scr0            ' buffer, size =   290.00 MB, ( 8888.52 / 49152.00)
ggml_metal_add_buffer: allocated 'scr1            ' buffer, size =   192.00 MB, ( 9080.52 / 49152.00)
AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | 

I'm looking for the most famous mathematicians of all time, and I want to know who the most influential mathematicians are in different areas of mathematics. Please provide a list of famous mathematicians that meet my criteria:

Born between 1800 and 2000
Made significant contributions to their respective fields (such as calculus, geometry, number theory, etc.)
Are widely recognized for their work and have had a lasting impact on the field of mathematics.

Here is a list of famous mathematicians that meet your criteria:

1. Carl Friedrich Gauss (1777-1855) - Gauss made significant contributions to number theory, geometry, and calculus. He is considered one of the greatest mathematicians of all time and is known as the "prince of mathematics."
2. Georg Cantor (1845-1918) - Cantor developed the theory of set theory and transfinite numbers, which revolutionized mathematics and had a lasting impact on modern mathematics.
3. David Hilbert (1862-1943) - Hilbert is known for his work on infinite-dimensional vector spaces, calculus, and number theory. He is considered one of the most important mathematicians of the 20th century.
4. Emmy Noether (1882-1935) - Noether made significant contributions to abstract algebra and is known for her work on symmetries in physics. She is considered one of the most important female mathematicians of all time.
5. Albert Einstein (1879-1955) - Einstein is known for his work on relativity, which had a lasting impact on modern physics and mathematics. He is also known for his work on Brownian motion and the photoelectric effect.
6. Andrew Wiles (1953-present) - Wiles made headlines in 1994 when he proved Fermat's Last Theorem, which had been unsolved for over 350 years. He is considered one of the most important mathematicians of the 20th century.
7. Grigori Perelman (1966-present) - Perelman made significant contributions to the field of geometry and is known for his work on the Poincaré conjecture, which was solved in 2003. He is considered one of the most important mathematicians of the 21st century.
8. Terence Tao (1975-present) - Tao is a polymath who has made significant contributions to many areas of mathematics, including harmonic analysis, partial differential equations, and number theory. He is considered one of the most important mathematicians of the 21st century.
9. Maryam Mirzakhani (1978-2017) - Mirzakhani was a brilliant mathematician who made significant contributions to the field of geometry and is known for her work on the dynamics and symmetry of curved spaces. She was the first woman to win the Fields Medal, which is considered the most prestigious award in mathematics.
10. Ngô Bảo Châu (1972-present) - Châu is a Vietnamese-French mathematician who has made significant contributions to number theory and algebraic geometry. He was awarded the Fields Medal in 2010 for his work on the Langlands program, which is a vast web of connections between different areas of mathematics.
Please note that this is not an exhaustive list, and there are many other famous mathematicians who have made significant contributions to their respective fields. However, these individuals are widely recognized as some of the most influential mathematicians of all time
llama_print_timings:        load time =  2044.25 ms
llama_print_timings:      sample time =   617.99 ms /   808 runs   (    0.76 ms per token,  1307.46 tokens per second)
llama_print_timings: prompt eval time =  2044.22 ms /    24 tokens (   85.18 ms per token,    11.74 tokens per second)
llama_print_timings:        eval time = 31352.04 ms /   807 runs   (   38.85 ms per token,    25.74 tokens per second)
llama_print_timings:       total time = 35253.11 ms
.

ggml_metal_free: deallocating

Non working code for M1 metal GPU:

from llama_cpp import Llama

model_path = './llama-2-70b-chat.ggmlv3.q4_0.bin'
lm = Llama(model_path,
             n_ctx = 2048,
             n_gpu_layers = 130,
             n_gqa = 8)

output = lm("Give me a list of famous mathematicians between born from 1800 to 2000.",
              max_tokens = 1000, 
              stream = True)

for token in output:
    print(token['choices'][0]['text'], end='', flush=True)

Code output:

llama.cpp: loading model from ./llama-2-70b-chat.ggmlv3.q4_0.bin
llama_model_load_internal: warning: assuming 70B model based on GQA == 8
llama_model_load_internal: format     = ggjt v3 (latest)
llama_model_load_internal: n_vocab    = 32000
llama_model_load_internal: n_ctx      = 2048
llama_model_load_internal: n_embd     = 8192
llama_model_load_internal: n_mult     = 4096
llama_model_load_internal: n_head     = 64
llama_model_load_internal: n_head_kv  = 8
llama_model_load_internal: n_layer    = 80
llama_model_load_internal: n_rot      = 128
llama_model_load_internal: n_gqa      = 8
llama_model_load_internal: rnorm_eps  = 1.0e-06
llama_model_load_internal: n_ff       = 28672
llama_model_load_internal: freq_base  = 10000.0
llama_model_load_internal: freq_scale = 1
llama_model_load_internal: ftype      = 2 (mostly Q4_0)
llama_model_load_internal: model size = 70B
llama_model_load_internal: ggml ctx size =    0.21 MB
llama_model_load_internal: mem required  = 37854.96 MB (+  640.00 MB per state)
llama_new_context_with_model: kv self size  =  640.00 MB
ggml_metal_init: allocating
ggml_metal_init: using MPS
ggml_metal_init: loading '/Users/miniforge3/envs/llamaM1/lib/python3.9/site-packages/llama_cpp/ggml-metal.metal'
ggml_metal_init: loaded kernel_add                            0x11ee961d0
ggml_metal_init: loaded kernel_add_row                        0x11ee98480
ggml_metal_init: loaded kernel_mul                            0x10eebf420
ggml_metal_init: loaded kernel_mul_row                        0x10eec0120
ggml_metal_init: loaded kernel_scale                          0x10eebf680
ggml_metal_init: loaded kernel_silu                           0x10eec1430
ggml_metal_init: loaded kernel_relu                           0x10eec0380
ggml_metal_init: loaded kernel_gelu                           0x10eec1b70
ggml_metal_init: loaded kernel_soft_max                       0x10eec27e0
ggml_metal_init: loaded kernel_diag_mask_inf                  0x10eec2c70
ggml_metal_init: loaded kernel_get_rows_f16                   0x10eec3730
ggml_metal_init: loaded kernel_get_rows_q4_0                  0x10eec3df0
ggml_metal_init: loaded kernel_get_rows_q4_1                  0x10eec4680
ggml_metal_init: loaded kernel_get_rows_q2_K                  0x10eec4d70
ggml_metal_init: loaded kernel_get_rows_q3_K                  0x10ef93be0
ggml_metal_init: loaded kernel_get_rows_q4_K                  0x10ef949d0
ggml_metal_init: loaded kernel_get_rows_q5_K                  0x104218670
ggml_metal_init: loaded kernel_get_rows_q6_K                  0x10ef94c30
ggml_metal_init: loaded kernel_rms_norm                       0x10ef959f0
ggml_metal_init: loaded kernel_norm                           0x10ef96610
ggml_metal_init: loaded kernel_mul_mat_f16_f32                0x10ef95f90
ggml_metal_init: loaded kernel_mul_mat_q4_0_f32               0x10ef96ed0
ggml_metal_init: loaded kernel_mul_mat_q4_1_f32               0x10ef97780
ggml_metal_init: loaded kernel_mul_mat_q2_K_f32               0x10ef985a0
ggml_metal_init: loaded kernel_mul_mat_q3_K_f32               0x10ef98ed0
ggml_metal_init: loaded kernel_mul_mat_q4_K_f32               0x10ef99e60
ggml_metal_init: loaded kernel_mul_mat_q5_K_f32               0x10ef9a5f0
ggml_metal_init: loaded kernel_mul_mat_q6_K_f32               0x10ef9b260
ggml_metal_init: loaded kernel_rope                           0x10ef9b860
ggml_metal_init: loaded kernel_alibi_f32                      0x10431e330
ggml_metal_init: loaded kernel_cpy_f32_f16                    0x10431ef10
ggml_metal_init: loaded kernel_cpy_f32_f32                    0x10431f9e0
ggml_metal_init: loaded kernel_cpy_f16_f16                    0x10431fc40
ggml_metal_init: recommendedMaxWorkingSetSize = 49152.00 MB
ggml_metal_init: hasUnifiedMemory             = true
ggml_metal_init: maxTransferRate              = built-in GPU
llama_new_context_with_model: max tensor size =   205.08 MB
ggml_metal_add_buffer: allocated 'data            ' buffer, size = 36864.00 MB, offs =            0
ggml_metal_add_buffer: allocated 'data            ' buffer, size =   412.30 MB, offs =  38439649280, (37276.75 / 49152.00)
ggml_metal_add_buffer: allocated 'eval            ' buffer, size =    24.00 MB, (37300.75 / 49152.00)
ggml_metal_add_buffer: allocated 'kv              ' buffer, size =   642.00 MB, (37942.75 / 49152.00)
ggml_metal_add_buffer: allocated 'scr0            ' buffer, size =   456.00 MB, (38398.75 / 49152.00)
ggml_metal_add_buffer: allocated 'scr1            ' buffer, size =   304.00 MB, (38702.75 / 49152.00)
AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | 
GGML_ASSERT: /private/var/folders/fw/wjnxhm6n7bv6bwlk4pkxtdq00000gp/T/pip-install-lt5z7o3y/llama-cpp-python_6789b9807ac84e2ab2c3dcb9e071c493/vendor/llama.cpp/ggml-metal.m:612: ne02 == ne12
GGML_ASSERT: /private/var/folders/fw/wjnxhm6n7bv6bwlk4pkxtdq00000gp/T/pip-install-lt5z7o3y/llama-cpp-python_6789b9807ac84e2ab2c3dcb9e071c493/vendor/llama.cpp/ggml-metal.m:612: ne02 == ne12
Abort trap: 6
steveoon commented 1 year ago

Got the same issue while use GPU metal(-npl 1),

The ggml-model-q4_0.gguf and ggml-model-q4_1.gguf works fine with GPU metal.

But the ggml-model-q5_0.gguf and ggml-model-q8_0.gguf throw an Error:

main: build = 1048 (8942dbc)
main: seed  = 1692862016
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from ./models/13B/chinese-alpaca-2-13b-hf/ggml-model-q5_0.gguf (version GGUF V1 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q5_0     [  5120, 55296,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  289:             blk.32.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  290:             blk.32.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  291:             blk.32.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  292:        blk.32.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  293:           blk.32.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  294:             blk.32.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  295:           blk.32.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  296:          blk.32.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  297:           blk.32.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  298:             blk.33.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  299:             blk.33.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  300:             blk.33.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  301:        blk.33.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  302:           blk.33.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  303:             blk.33.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  304:           blk.33.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  305:          blk.33.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  306:           blk.33.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  307:             blk.34.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  308:             blk.34.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  309:             blk.34.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  310:        blk.34.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  311:           blk.34.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  312:             blk.34.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  313:           blk.34.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  314:          blk.34.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  315:           blk.34.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  316:             blk.35.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  317:             blk.35.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  318:             blk.35.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  319:        blk.35.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  320:           blk.35.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  321:             blk.35.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  322:           blk.35.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  323:          blk.35.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  324:           blk.35.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  325:             blk.36.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  326:             blk.36.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  327:             blk.36.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  328:        blk.36.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  329:           blk.36.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  330:             blk.36.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  331:           blk.36.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  332:          blk.36.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  333:           blk.36.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  334:             blk.37.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  335:             blk.37.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  336:             blk.37.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  337:        blk.37.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  338:           blk.37.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  339:             blk.37.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  340:           blk.37.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  341:          blk.37.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  342:           blk.37.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  343:             blk.38.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  344:             blk.38.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  345:             blk.38.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  346:        blk.38.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  347:           blk.38.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  348:             blk.38.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  349:           blk.38.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  350:          blk.38.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  351:           blk.38.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  352:             blk.39.attn_q.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  353:             blk.39.attn_k.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  354:             blk.39.attn_v.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  355:        blk.39.attn_output.weight q5_0     [  5120,  5120,     1,     1 ]
llama_model_loader: - tensor  356:           blk.39.ffn_gate.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  357:             blk.39.ffn_up.weight q5_0     [  5120, 13824,     1,     1 ]
llama_model_loader: - tensor  358:           blk.39.ffn_down.weight q5_0     [ 13824,  5120,     1,     1 ]
llama_model_loader: - tensor  359:          blk.39.attn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  360:           blk.39.ffn_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  361:               output_norm.weight f32      [  5120,     1,     1,     1 ]
llama_model_loader: - tensor  362:                    output.weight q6_K     [  5120, 55296,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str
llama_model_loader: - kv   1:                               general.name str
llama_model_loader: - kv   2:                       llama.context_length u32
llama_model_loader: - kv   3:                     llama.embedding_length u32
llama_model_loader: - kv   4:                          llama.block_count u32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32
llama_model_loader: - kv   7:                 llama.attention.head_count u32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv  10:                          general.file_type u32
llama_model_loader: - kv  11:                       tokenizer.ggml.model str
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr
llama_model_loader: - kv  15:               general.quantization_version u32
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q5_0:  281 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V1 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 55296
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 4096
llm_load_print_meta: n_ctx          = 512
llm_load_print_meta: n_embd         = 5120
llm_load_print_meta: n_head         = 40
llm_load_print_meta: n_head_kv      = 40
llm_load_print_meta: n_layer        = 40
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 13824
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 13B
llm_load_print_meta: model ftype    = mostly Q5_0
llm_load_print_meta: model size     = 13.25 B
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: mem required  = 8727.55 MB (+  400.00 MB per state)
.................................................................................................
llama_new_context_with_model: kv self size  =  400.00 MB
ggml_metal_init: allocating
ggml_metal_init: loading '/Users/username/Documents/llama.cpp/ggml-metal.metal'
ggml_metal_init: loaded kernel_add                            0x13d6087f0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_add_row                        0x13d609040 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul                            0x13d609580 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_row                        0x13d609bd0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_scale                          0x13d60a110 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_silu                           0x13d60a650 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_relu                           0x13d60ab90 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_gelu                           0x13d60b0d0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_soft_max                       0x13d60b7a0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_diag_mask_inf                  0x13d60be20 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_f16                   0x13d60c4f0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_0                  0x13d60cd30 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_1                  0x13d60d400 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q2_K                  0x13d60dad0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q3_K                  0x13d60e1a0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q4_K                  0x13d60e870 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q5_K                  0x13d60ef40 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_get_rows_q6_K                  0x13d60f610 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_rms_norm                       0x13d60fcf0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_norm                           0x13d610530 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_f16_f32                0x13d610e00 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_0_f32               0x13d611580 | th_max =  896 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_1_f32               0x13d611d00 | th_max =  896 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q2_K_f32               0x13d612600 | th_max =  640 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q3_K_f32               0x13d612d80 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q4_K_f32               0x13d613500 | th_max =  576 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q5_K_f32               0x13d613c80 | th_max =  576 | th_width =   32
ggml_metal_init: loaded kernel_mul_mat_q6_K_f32               0x13d614600 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_f16_f32                 0x13d615020 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_0_f32                0x13d6157e0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_1_f32                0x13d615fa0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q2_K_f32                0x13d616760 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q3_K_f32                0x13d616ca0 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q4_K_f32                0x13d617460 | th_max =  768 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q5_K_f32                0x13d617c20 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_mul_mm_q6_K_f32                0x13d6183e0 | th_max =  704 | th_width =   32
ggml_metal_init: loaded kernel_rope                           0x13d618920 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_alibi_f32                      0x13d619200 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f32_f16                    0x13d619ab0 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f32_f32                    0x13d61a360 | th_max = 1024 | th_width =   32
ggml_metal_init: loaded kernel_cpy_f16_f16                    0x13d61ac10 | th_max = 1024 | th_width =   32
ggml_metal_init: recommendedMaxWorkingSetSize  = 10922.67 MB
ggml_metal_init: hasUnifiedMemory              = true
ggml_metal_init: maxTransferRate               = built-in GPU
llama_new_context_with_model: compute buffer total size =  119.41 MB
llama_new_context_with_model: max tensor size =   221.48 MB
ggml_metal_add_buffer: allocated 'data            ' buffer, size =  8192.00 MB, offs =            0
ggml_metal_add_buffer: allocated 'data            ' buffer, size =   757.98 MB, offs =   8357675008, ( 8950.42 / 10922.67)
ggml_metal_add_buffer: allocated 'eval            ' buffer, size =     1.42 MB, ( 8951.84 / 10922.67)
ggml_metal_add_buffer: allocated 'kv              ' buffer, size =   402.00 MB, ( 9353.84 / 10922.67)
ggml_metal_add_buffer: allocated 'alloc           ' buffer, size =   118.02 MB, ( 9471.86 / 10922.67)

system_info: n_threads = 6 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: interactive mode on.
Reverse prompt: 'User'
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 512, n_keep = 0

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.

GGML_ASSERT: ggml-metal.m:907: false && "not implemented"
[1]    21623 abort      ./main -m ./models/13B/chinese-alpaca-2-13b-hf/ggml-model-q5_0.gguf -n 512 -i