ggerganov / llama.cpp

LLM inference in C/C++
MIT License
67.2k stars 9.64k forks source link

CUDA error 716 at ggml-cuda.cu:7546: misaligned address #4075

Closed devidw closed 11 months ago

devidw commented 11 months ago

Prerequisites

Please answer the following questions for yourself before submitting an issue.

Expected Behavior

run model server on h100 or a100 gpu (tried both)

Current Behavior

server dies with CUDA error 716 at ggml-cuda.cu:7546: misaligned address on first incoming job

Environment and Context

Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.

$ lscpu

Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 57 bits virtual
CPU(s):                          26
On-line CPU(s) list:             0-25
Thread(s) per core:              1
Core(s) per socket:              1
Socket(s):                       26
NUMA node(s):                    1
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           143
Model name:                      Intel(R) Xeon(R) Platinum 8480+
Stepping:                        8
CPU MHz:                         2000.000
BogoMIPS:                        4000.00
Virtualization:                  VT-x
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       832 KiB
L1i cache:                       832 KiB
L2 cache:                        104 MiB
L3 cache:                        416 MiB
NUMA node0 CPU(s):               0-25
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Unknown: No mitigations
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Mitigation; TSX disabled
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon re
                                 p_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c 
                                 rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbas
                                 e tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xg
                                 etbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq
                                  la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities

$ uname -a

Linux SERVER 5.15.0-73-generic #80~20.04.1-Ubuntu SMP Wed May 17 14:58:14 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux
$ python3 --version
$ make --version
$ g++ --version
ubuntu@SERVER:~$ python3 --version
Python 3.8.10
ubuntu@SERVER:~$ make --version
GNU Make 4.2.1
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
ubuntu@SERVER:~$ g++ --version
g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Failure Information (for bugs)

Please help provide information about the failure / bug.

Steps to Reproduce

Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.

  1. git clone and build with make clean && LLAMA_CUBLAS=1 make -j
  2. starting model server with:
serve:
    ./llama.cpp/server \
        -m ./models/models--migtissera--SynthIA-70B-v1.5-GGUF/snapshots/9553d4b0d86069f67ea926602b2d932e78da6c6c/SynthIA-70B-v1.5.q4_0.gguf \
        -c 2048 \
        --threads 1 \
        --n-gpu-layers 83
  1. send first job with
test:
    curl --request POST \
        --url http://localhost:8080/completion \
        --header "Content-Type: application/json" \
        --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'

Failure Logs

ubuntu@SERVER:~$ make serve
./llama.cpp/server \
        -m ./models/models--migtissera--SynthIA-70B-v1.5-GGUF/snapshots/9553d4b0d86069f67ea926602b2d932e78da6c6c/SynthIA-70B-v1.5.q4_0.gguf \
        -c 2048 \
        --threads 1 \
        --n-gpu-layers 83
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA H100 PCIe, compute capability 9.0
{"timestamp":1699974633,"level":"INFO","function":"main","line":2268,"message":"build info","build":1515,"commit":"36eed0c"}
{"timestamp":1699974633,"level":"INFO","function":"main","line":2271,"message":"system info","n_threads":1,"n_threads_batch":-1,"total_threads":26,"system_info":"AVX = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | "}
llama_model_loader: loaded meta data with 20 key-value pairs and 723 tensors from ./models/models--migtissera--SynthIA-70B-v1.5-GGUF/snapshots/9553d4b0d86069f67ea926602b2d932e78da6c6c/SynthIA-70B-v1.5.q4_0.gguf (version GGUF V2)
llama_model_loader: - tensor    0:                token_embd.weight q4_0     [  8192, 32000,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  289:             blk.32.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  290:             blk.32.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  291:             blk.32.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  292:        blk.32.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  293:           blk.32.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  294:             blk.32.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  295:           blk.32.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  296:          blk.32.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  297:           blk.32.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  298:             blk.33.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  299:             blk.33.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  300:             blk.33.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  301:        blk.33.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  302:           blk.33.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  303:             blk.33.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  304:           blk.33.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  305:          blk.33.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  306:           blk.33.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  307:             blk.34.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  308:             blk.34.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  309:             blk.34.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  310:        blk.34.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  311:           blk.34.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  312:             blk.34.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  313:           blk.34.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  314:          blk.34.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  315:           blk.34.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  316:             blk.35.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  317:             blk.35.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  318:             blk.35.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  319:        blk.35.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  320:           blk.35.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  321:             blk.35.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  322:           blk.35.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  323:          blk.35.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  324:           blk.35.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  325:             blk.36.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  326:             blk.36.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  327:             blk.36.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  328:        blk.36.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  329:           blk.36.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  330:             blk.36.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  331:           blk.36.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  332:          blk.36.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  333:           blk.36.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  334:             blk.37.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  335:             blk.37.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  336:             blk.37.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  337:        blk.37.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  338:           blk.37.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  339:             blk.37.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  340:           blk.37.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  341:          blk.37.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  342:           blk.37.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  343:             blk.38.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  344:             blk.38.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  345:             blk.38.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  346:        blk.38.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  347:           blk.38.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  348:             blk.38.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  349:           blk.38.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  350:          blk.38.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  351:           blk.38.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  352:             blk.39.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  353:             blk.39.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  354:             blk.39.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  355:        blk.39.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  356:           blk.39.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  357:             blk.39.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  358:           blk.39.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  359:          blk.39.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  360:           blk.39.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  361:             blk.40.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  362:             blk.40.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  363:             blk.40.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  364:        blk.40.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  365:           blk.40.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  366:             blk.40.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  367:           blk.40.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  368:          blk.40.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  369:           blk.40.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  370:             blk.41.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  371:             blk.41.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  372:             blk.41.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  373:        blk.41.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  374:           blk.41.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  375:             blk.41.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  376:           blk.41.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  377:          blk.41.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  378:           blk.41.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  379:             blk.42.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  380:             blk.42.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  381:             blk.42.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  382:        blk.42.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  383:           blk.42.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  384:             blk.42.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  385:           blk.42.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  386:          blk.42.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  387:           blk.42.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  388:             blk.43.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  389:             blk.43.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  390:             blk.43.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  391:        blk.43.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  392:           blk.43.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  393:             blk.43.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  394:           blk.43.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  395:          blk.43.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  396:           blk.43.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  397:             blk.44.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  398:             blk.44.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  399:             blk.44.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  400:        blk.44.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  401:           blk.44.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  402:             blk.44.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  403:           blk.44.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  404:          blk.44.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  405:           blk.44.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  406:             blk.45.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  407:             blk.45.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  408:             blk.45.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  409:        blk.45.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  410:           blk.45.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  411:             blk.45.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  412:           blk.45.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  413:          blk.45.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  414:           blk.45.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  415:             blk.46.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  416:             blk.46.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  417:             blk.46.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  418:        blk.46.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  419:           blk.46.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  420:             blk.46.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  421:           blk.46.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  422:          blk.46.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  423:           blk.46.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  424:             blk.47.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  425:             blk.47.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  426:             blk.47.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  427:        blk.47.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  428:           blk.47.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  429:             blk.47.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  430:           blk.47.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  431:          blk.47.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  432:           blk.47.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  433:             blk.48.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  434:             blk.48.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  435:             blk.48.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  436:        blk.48.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  437:           blk.48.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  438:             blk.48.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  439:           blk.48.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  440:          blk.48.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  441:           blk.48.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  442:             blk.49.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  443:             blk.49.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  444:             blk.49.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  445:        blk.49.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  446:           blk.49.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  447:             blk.49.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  448:           blk.49.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  449:          blk.49.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  450:           blk.49.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  451:             blk.50.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  452:             blk.50.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  453:             blk.50.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  454:        blk.50.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  455:           blk.50.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  456:             blk.50.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  457:           blk.50.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  458:          blk.50.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  459:           blk.50.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  460:             blk.51.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  461:             blk.51.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  462:             blk.51.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  463:        blk.51.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  464:           blk.51.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  465:             blk.51.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  466:           blk.51.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  467:          blk.51.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  468:           blk.51.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  469:             blk.52.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  470:             blk.52.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  471:             blk.52.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  472:        blk.52.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  473:           blk.52.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  474:             blk.52.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  475:           blk.52.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  476:          blk.52.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  477:           blk.52.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  478:             blk.53.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  479:             blk.53.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  480:             blk.53.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  481:        blk.53.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  482:           blk.53.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  483:             blk.53.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  484:           blk.53.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  485:          blk.53.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  486:           blk.53.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  487:             blk.54.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  488:             blk.54.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  489:             blk.54.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  490:        blk.54.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  491:           blk.54.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  492:             blk.54.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  493:           blk.54.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  494:          blk.54.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  495:           blk.54.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  496:             blk.55.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  497:             blk.55.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  498:             blk.55.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  499:        blk.55.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  500:           blk.55.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  501:             blk.55.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  502:           blk.55.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  503:          blk.55.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  504:           blk.55.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  505:             blk.56.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  506:             blk.56.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  507:             blk.56.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  508:        blk.56.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  509:           blk.56.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  510:             blk.56.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  511:           blk.56.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  512:          blk.56.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  513:           blk.56.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  514:             blk.57.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  515:             blk.57.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  516:             blk.57.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  517:        blk.57.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  518:           blk.57.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  519:             blk.57.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  520:           blk.57.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  521:          blk.57.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  522:           blk.57.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  523:             blk.58.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  524:             blk.58.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  525:             blk.58.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  526:        blk.58.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  527:           blk.58.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  528:             blk.58.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  529:           blk.58.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  530:          blk.58.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  531:           blk.58.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  532:             blk.59.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  533:             blk.59.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  534:             blk.59.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  535:        blk.59.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  536:           blk.59.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  537:             blk.59.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  538:           blk.59.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  539:          blk.59.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  540:           blk.59.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  541:             blk.60.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  542:             blk.60.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  543:             blk.60.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  544:        blk.60.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  545:           blk.60.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  546:             blk.60.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  547:           blk.60.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  548:          blk.60.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  549:           blk.60.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  550:             blk.61.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  551:             blk.61.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  552:             blk.61.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  553:        blk.61.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  554:           blk.61.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  555:             blk.61.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  556:           blk.61.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  557:          blk.61.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  558:           blk.61.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  559:             blk.62.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  560:             blk.62.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  561:             blk.62.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  562:        blk.62.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  563:           blk.62.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  564:             blk.62.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  565:           blk.62.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  566:          blk.62.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  567:           blk.62.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  568:             blk.63.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  569:             blk.63.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  570:             blk.63.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  571:        blk.63.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  572:           blk.63.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  573:             blk.63.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  574:           blk.63.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  575:          blk.63.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  576:           blk.63.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  577:             blk.64.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  578:             blk.64.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  579:             blk.64.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  580:        blk.64.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  581:           blk.64.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  582:             blk.64.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  583:           blk.64.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  584:          blk.64.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  585:           blk.64.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  586:             blk.65.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  587:             blk.65.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  588:             blk.65.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  589:        blk.65.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  590:           blk.65.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  591:             blk.65.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  592:           blk.65.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  593:          blk.65.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  594:           blk.65.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  595:             blk.66.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  596:             blk.66.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  597:             blk.66.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  598:        blk.66.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  599:           blk.66.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  600:             blk.66.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  601:           blk.66.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  602:          blk.66.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  603:           blk.66.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  604:             blk.67.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  605:             blk.67.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  606:             blk.67.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  607:        blk.67.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  608:           blk.67.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  609:             blk.67.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  610:           blk.67.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  611:          blk.67.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  612:           blk.67.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  613:             blk.68.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  614:             blk.68.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  615:             blk.68.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  616:        blk.68.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  617:           blk.68.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  618:             blk.68.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  619:           blk.68.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  620:          blk.68.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  621:           blk.68.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  622:             blk.69.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  623:             blk.69.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  624:             blk.69.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  625:        blk.69.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  626:           blk.69.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  627:             blk.69.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  628:           blk.69.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  629:          blk.69.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  630:           blk.69.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  631:             blk.70.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  632:             blk.70.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  633:             blk.70.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  634:        blk.70.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  635:           blk.70.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  636:             blk.70.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  637:           blk.70.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  638:          blk.70.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  639:           blk.70.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  640:             blk.71.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  641:             blk.71.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  642:             blk.71.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  643:        blk.71.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  644:           blk.71.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  645:             blk.71.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  646:           blk.71.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  647:          blk.71.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  648:           blk.71.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  649:             blk.72.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  650:             blk.72.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  651:             blk.72.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  652:        blk.72.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  653:           blk.72.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  654:             blk.72.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  655:           blk.72.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  656:          blk.72.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  657:           blk.72.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  658:             blk.73.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  659:             blk.73.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  660:             blk.73.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  661:        blk.73.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  662:           blk.73.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  663:             blk.73.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  664:           blk.73.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  665:          blk.73.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  666:           blk.73.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  667:             blk.74.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  668:             blk.74.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  669:             blk.74.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  670:        blk.74.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  671:           blk.74.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  672:             blk.74.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  673:           blk.74.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  674:          blk.74.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  675:           blk.74.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  676:             blk.75.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  677:             blk.75.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  678:             blk.75.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  679:        blk.75.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  680:           blk.75.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  681:             blk.75.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  682:           blk.75.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  683:          blk.75.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  684:           blk.75.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  685:             blk.76.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  686:             blk.76.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  687:             blk.76.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  688:        blk.76.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  689:           blk.76.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  690:             blk.76.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  691:           blk.76.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  692:          blk.76.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  693:           blk.76.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  694:             blk.77.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  695:             blk.77.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  696:             blk.77.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  697:        blk.77.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  698:           blk.77.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  699:             blk.77.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  700:           blk.77.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  701:          blk.77.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  702:           blk.77.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  703:             blk.78.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  704:             blk.78.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  705:             blk.78.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  706:        blk.78.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  707:           blk.78.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  708:             blk.78.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  709:           blk.78.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  710:          blk.78.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  711:           blk.78.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  712:             blk.79.attn_q.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  713:             blk.79.attn_k.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  714:             blk.79.attn_v.weight q4_0     [  8192,  1024,     1,     1 ]
llama_model_loader: - tensor  715:        blk.79.attn_output.weight q4_0     [  8192,  8192,     1,     1 ]
llama_model_loader: - tensor  716:           blk.79.ffn_gate.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  717:             blk.79.ffn_up.weight q4_0     [  8192, 28672,     1,     1 ]
llama_model_loader: - tensor  718:           blk.79.ffn_down.weight q4_0     [ 28672,  8192,     1,     1 ]
llama_model_loader: - tensor  719:          blk.79.attn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  720:           blk.79.ffn_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  721:               output_norm.weight f32      [  8192,     1,     1,     1 ]
llama_model_loader: - tensor  722:                    output.weight q6_K     [  8192, 32000,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama_model_loader: - kv  11:                          general.file_type u32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  19:               general.quantization_version u32     
llama_model_loader: - type  f32:  161 tensors
llama_model_loader: - type q4_0:  561 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 2048
llm_load_print_meta: n_embd           = 8192
llm_load_print_meta: n_head           = 64
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 80
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 28672
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 2048
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 70B
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 68.98 B
llm_load_print_meta: model size       = 36.20 GiB (4.51 BPW) 
llm_load_print_meta: general.name   = llm
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.26 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  =  140.89 MB
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 83/83 layers to GPU
llm_load_tensors: VRAM used: 36930.11 MB
....................................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 640.00 MB
llama_new_context_with_model: kv self size  =  640.00 MB
llama_build_graph: non-view tensors processed: 1844/1844
llama_new_context_with_model: compute buffer total size = 309.57 MB
llama_new_context_with_model: VRAM scratch buffer: 308.00 MB
llama_new_context_with_model: total VRAM used: 37878.11 MB (model: 36930.11 MB, context: 948.00 MB)
Available slots:
 -> Slot 0 - max context: 2048

llama server listening at http://127.0.0.1:8080

{"timestamp":1699974639,"level":"INFO","function":"main","line":2548,"message":"HTTP server listening","hostname":"127.0.0.1","port":8080}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)

CUDA error 716 at ggml-cuda.cu:7546: misaligned address
current device: 0
make: *** [Makefile:2: serve] Error 1
mgolub2 commented 11 months ago

I have a similar error: CUDA error 716 at ggml-cuda.cu:6835: misaligned address

Using 1 or 2 4090s. Several models, tried shiningvaliant 70B and a 20B model.

Interestingly, if I don't offload all the layers to the GPU, I don't see the same issue and generation works fine. I checked out the main branch about 20 minutes ago - on commit 6bb4908a17150b49373b5f977685b2e180a04f6f

ggerganov commented 11 months ago

Can you find which commit breaks it?

mgolub2 commented 11 months ago

Will try - I'm now getting a segfault instead, after disabling IOMMU and AMD virtualization. I noticed in my kernel messages that when I got the addresss boundary error, there was a bunch of lines with the following:

nvidia 0000:09:00.0: AMD-Vi: Event logged [IO_PAGE_FAULT 
KerfuffleV2 commented 11 months ago

edit: Seems like the line numbers for the misaligned address failure are different so maybe this isn't the same. CUDA error 716 at ggml-cuda.cu:7104: misaligned address

Seems like TheBloke also has this issue: https://huggingface.co/TheBloke/Nous-Capybara-34B-GGUF/discussions/1#6553acc8e231fbb2edc30285

Seems like it's just for Yi-based models. He said:

One system has 8 x A6000 - but I'm limiting it to a single GPU using CUDA_VISIBLE_DEVICES. The other a single H100. Both are on CUDA 11.8.

Every generation using -ngl X fails with the error shown before, on those two models. I've not tested other Yi models yet, but other models (Llama 2 13B, Mistral 7B, etc) work fine on the same systems.

Those models work for me on ROCM though I can only offload a few layers.

mgolub2 commented 11 months ago

Okay, I don't have any clue what is happening - currently on commit 48ade94538fa509465d71023e49d07aab0ec8cd5

I'm also not using any Yi derived models.

I was able to get the shiningvaliant model to run again, but it only produced junk output (mostly ###) - an issue I was having before checking out the latest code - I had figured it was related to upgrading to cuda 12.3 from 12.1. After purging my system of 12.3 drivers and cuda stuff, I installed 12.1 again via Nvidia's run file, and tried the shiningvalient model.

That's when I got the CUDA error 716 at ggml-cuda.cu:6835: misaligned address error - which eventually I tracked down to having AMDs virtualization on (possibly? it was working with it on before, I thought...). After setting amd_iommu=off, I started getting segfaults instead with commit 6bb4908a17150b49373b5f977685b2e180a04f6f - on 48ade94538fa509465d71023e49d07aab0ec8cd5, both models I was testing produce ######## as the only output.

Now for the scary part - either my system is very broken, in a very bad way, or, llama.cpp is corrupting model files on loading them!! I downloaded a fresh copy of shiningvaliant - and ran md5sum:

mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf 
f71679c53a4281970fce122736ceabac  shiningvaliant-1.2.Q4_K_M.gguf

I tried running the model in llama.cpp, got ##### for the output again - checked md5sum again and....

mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf
2994b05523341e4007122660595fbf06  shiningvaliant-1.2.Q4_K_M.gguf

Almost every time I run llama.cpp, the file hash changes. If I don't run llama.cpp, come back an hour later, the hash is fine, so I don't think my brand new SSD(s, I tried a PCIE4 one and an optane one...) are corrupting the data.

So, that's extremely not great - unless this is expected? Does llama.cpp modify the file each run?

Hopefully it's my system being utterly broken? Though I would think memory corruption/disk corruption that bad would just crash linux/windows pretty fast.

mgolub2 commented 11 months ago

As an addendum, I re-downloaded shiningvaliant-1.2.Q4_K_M.gguf, and calculated the md5sum again - matches the first time I ran it. removing -ngl from my command, the models works fine, and checking the hash again, it is still the original f71679c hash.

Running with -ngl, I got the same ##### output issue I was having, and the file now hashes to 1d39f46d03d6218e98f8775d91984834 - so the corruption itself is not repeatable either.

Running the now corrupted file without -ngl results in the similar (but different!) broken output with -ngl, so the file is damaged now.

(Is my system super broken?)

mgolub2 commented 11 months ago

Okay, sorry to spam so many comments, but I think the issue has to be memory corruption on my system (in the gpu memory?!) !!!

I did the following:

mgolub2@4090 /mnt> sudo umount /mnt/p4 
[sudo] password for mgolub2: 
mgolub2@4090 /mnt> sudo mount -o ro /mnt/p4
mgolub2@4090 /mnt> ls /mnt/p4/
models
mgolub2@4090 /mnt> touch /mnt/p4/te
touch: cannot touch '/mnt/p4/te': Read-only file system
mgolub2@4090 /mnt [1]> cd /mnt/p4/models/
mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf
f71679c53a4281970fce122736ceabac  shiningvaliant-1.2.Q4_K_M.gguf
mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf # <- post running llama.cpp 
91b594919be553bdeead16c0c046d4be  shiningvaliant-1.2.Q4_K_M.gguf
mgolub2@4090 /m/p/models> 

I have no idea how the hash changes on a read only filesystem. llama.cpp was run as a normal user, not root, not that it should matter.

kallewoof commented 11 months ago
4760e7cc0b68570d58f55e8dda469805d1759d0d is the first bad commit
commit 4760e7cc0b68570d58f55e8dda469805d1759d0d
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Mon Nov 13 14:16:23 2023 +0200

    sync : ggml (backend v2) (#3912)

    * sync : ggml (backend v2) (wip)

    * sync : migrate examples and llama.cpp to dynamic graphs (wip)

    * sync : update tests + fix max op params to 64

    ggml-ci

    * sync : ggml-cuda

    ggml-ci

    * llama : fix save/load state context size

    ggml-ci

    * sync : try to fix build on tvOS

    * sync : pass custom graph sizes in training examples

    * sync : update graph copies to new ggml API

    * sync : update sync-ggml.sh with new files

    * scripts : fix header in sync script

    * train : fix context size calculations

    * llama : increase inference graph size up to 4096 nodes

    * train : allocate grads for backward graphs

    * train : allocate grads for gb_tmp

 common/train.cpp                                   |    1 +
 common/train.h                                     |    2 +
 examples/benchmark/benchmark-matmult.cpp           |   21 +-
 examples/export-lora/export-lora.cpp               |    4 +-
 examples/finetune/finetune.cpp                     |   23 +-
 examples/llava/clip.cpp                            |    2 +-
 examples/metal/metal.cpp                           |   10 +-
 .../train-text-from-scratch.cpp                    |   23 +-
 ggml-alloc.c                                       |  586 +++++++----
 ggml-alloc.h                                       |   84 +-
 ggml-backend-impl.h                                |   87 ++
 ggml-backend.c                                     |  591 ++++++++++-
 ggml-backend.h                                     |  147 ++-
 ggml-cuda.cu                                       |   16 +-
 ggml-impl.h                                        |   14 +-
 ggml-metal.m                                       |   25 +-
 ggml.c                                             | 1047 ++++++++++++--------
 ggml.h                                             |   89 +-
 llama.cpp                                          |   40 +-
 scripts/sync-ggml.sh                               |   12 +-
 tests/test-grad0.cpp                               |    7 +-
 tests/test-opt.cpp                                 |   11 +-
 22 files changed, 1986 insertions(+), 856 deletions(-)
 create mode 100644 ggml-backend-impl.h
kallewoof commented 11 months ago

Not used to using cuda-gdb, but:

USER: Explain quantum physics. ASSISTANT: 田间
CUDA Exception: Warp Misaligned Address
The exception was triggered at PC 0x7fff9ea56d50

Thread 1 "main" received signal CUDA_EXCEPTION_6, Warp Misaligned Address.
[Switching focus to CUDA kernel 473, grid 4598, block (0,0,0), thread (800,0,0), device 0, sm 0, warp 25, lane 0]
0x00007fff9ea56c80 in void rms_norm_f32<1024>(float const*, float*, int, float)<<<(1,1,1),(1024,1,1)>>> ()
(cuda-gdb) bt
#0  0x00007fff9ea56c80 in void rms_norm_f32<1024>(float const*, float*, int, float)<<<(1,1,1),(1024,1,1)>>> ()
mgolub2 commented 11 months ago

Okay, sorry to spam so many comments, but I think the issue has to be memory corruption on my system (in the gpu memory?!) !!!

I did the following:

mgolub2@4090 /mnt> sudo umount /mnt/p4 
[sudo] password for mgolub2: 
mgolub2@4090 /mnt> sudo mount -o ro /mnt/p4
mgolub2@4090 /mnt> ls /mnt/p4/
models
mgolub2@4090 /mnt> touch /mnt/p4/te
touch: cannot touch '/mnt/p4/te': Read-only file system
mgolub2@4090 /mnt [1]> cd /mnt/p4/models/
mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf
f71679c53a4281970fce122736ceabac  shiningvaliant-1.2.Q4_K_M.gguf
mgolub2@4090 /m/p/models> md5sum shiningvaliant-1.2.Q4_K_M.gguf # <- post running llama.cpp 
91b594919be553bdeead16c0c046d4be  shiningvaliant-1.2.Q4_K_M.gguf
mgolub2@4090 /m/p/models> 

I have no idea how the hash changes on a read only filesystem. llama.cpp was run as a normal user, not root, not that it should matter.

Ah - mmap strikes again. Rebooting the system after passing memtest, the file is now back to it's original hash - though I bet if the disk is mounted rw, this corruption would persist as the changes would get synced back to the filesystem? I'm not well versed in how mmap works.

4760e7cc0b68570d58f55e8dda469805d1759d0d is the first bad commit
commit 4760e7cc0b68570d58f55e8dda469805d1759d0d
Author: Georgi Gerganov <ggerganov@gmail.com>
Date:   Mon Nov 13 14:16:23 2023 +0200

    sync : ggml (backend v2) (#3912)

    * sync : ggml (backend v2) (wip)

    * sync : migrate examples and llama.cpp to dynamic graphs (wip)

    * sync : update tests + fix max op params to 64

    ggml-ci

    * sync : ggml-cuda

    ggml-ci

    * llama : fix save/load state context size

    ggml-ci

    * sync : try to fix build on tvOS

    * sync : pass custom graph sizes in training examples

    * sync : update graph copies to new ggml API

    * sync : update sync-ggml.sh with new files

    * scripts : fix header in sync script

    * train : fix context size calculations

    * llama : increase inference graph size up to 4096 nodes

    * train : allocate grads for backward graphs

    * train : allocate grads for gb_tmp

 common/train.cpp                                   |    1 +
 common/train.h                                     |    2 +
 examples/benchmark/benchmark-matmult.cpp           |   21 +-
 examples/export-lora/export-lora.cpp               |    4 +-
 examples/finetune/finetune.cpp                     |   23 +-
 examples/llava/clip.cpp                            |    2 +-
 examples/metal/metal.cpp                           |   10 +-
 .../train-text-from-scratch.cpp                    |   23 +-
 ggml-alloc.c                                       |  586 +++++++----
 ggml-alloc.h                                       |   84 +-
 ggml-backend-impl.h                                |   87 ++
 ggml-backend.c                                     |  591 ++++++++++-
 ggml-backend.h                                     |  147 ++-
 ggml-cuda.cu                                       |   16 +-
 ggml-impl.h                                        |   14 +-
 ggml-metal.m                                       |   25 +-
 ggml.c                                             | 1047 ++++++++++++--------
 ggml.h                                             |   89 +-
 llama.cpp                                          |   40 +-
 scripts/sync-ggml.sh                               |   12 +-
 tests/test-grad0.cpp                               |    7 +-
 tests/test-opt.cpp                                 |   11 +-
 22 files changed, 1986 insertions(+), 856 deletions(-)
 create mode 100644 ggml-backend-impl.h

I can confirm this commit is problematic, though it causes a different issue for me: CUDA error 700 at ggml-cuda.cu:6838: an illegal memory access was encountered current device: 0

ggerganov commented 11 months ago

@TheBloke @devidw @kallewoof @mgolub2 Could you please confirm that #4048 fixes the issue?

TheBloke commented 11 months ago

Yes it does! Thank you

(it's #4084 BTW)

devidw commented 11 months ago

Yeah, can confirm also, thx 🙏

$ make serve
./llama.cpp/server \
        -m ~/models/models--TheBloke--OpenHermes-2.5-Mistral-7B-GGUF/snapshots/5682e25bb033d9d21f6d159859e21df4552c1f26/openhermes-2.5-mistral-7b.Q2_K.gguf \
        -c 2048 \
        --threads 1 \
        --n-gpu-layers 83
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA H100 PCIe, compute capability 9.0
{"timestamp":1700049283,"level":"INFO","function":"main","line":2268,"message":"build info","build":1517,"commit":"b4a36f4"}
{"timestamp":1700049283,"level":"INFO","function":"main","line":2271,"message":"system info","n_threads":1,"n_threads_batch":-1,"total_threads":26,"system_info":"AVX = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | "}
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /home/ubuntu/models/models--TheBloke--OpenHermes-2.5-Mistral-7B-GGUF/snapshots/5682e25bb033d9d21f6d159859e21df4552c1f26/openhermes-2.5-mistral-7b.Q2_K.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q2_K     [  4096, 32002,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q2_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q2_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q3_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q3_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q3_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  290:                    output.weight q6_K     [  4096, 32002,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama_model_loader: - kv  11:                          general.file_type u32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  18:            tokenizer.ggml.padding_token_id u32     
llama_model_loader: - kv  19:               general.quantization_version u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q2_K:   65 tensors
llama_model_loader: - type q3_K:  160 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: special tokens definition check successful ( 261/32002 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32002
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q2_K
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 2.87 GiB (3.41 BPW) 
llm_load_print_meta: general.name   = teknium_openhermes-2.5-mistral-7b
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 32000 '<|im_end|>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  =   41.12 MB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 35/35 layers to GPU
llm_load_tensors: VRAM used: 2898.56 MB
.................................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 256.00 MB
llama_new_context_with_model: kv self size  =  256.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 157.57 MB
llama_new_context_with_model: VRAM scratch buffer: 156.00 MB
llama_new_context_with_model: total VRAM used: 3310.57 MB (model: 2898.56 MB, context: 412.00 MB)
Available slots:
 -> Slot 0 - max context: 2048

llama server listening at http://127.0.0.1:8080

{"timestamp":1700049284,"level":"INFO","function":"main","line":2548,"message":"HTTP server listening","hostname":"127.0.0.1","port":8080}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)

print_timings: prompt eval time =      66.75 ms /     2 tokens (   33.37 ms per token,    29.96 tokens per second)
print_timings:        eval time =    4759.53 ms /   328 runs   (   14.51 ms per token,    68.91 tokens per second)
print_timings:       total time =    4826.28 ms
slot 0 released (331 tokens in cache)
{"timestamp":1700049296,"level":"INFO","function":"log_server_request","line":2212,"message":"request","remote_addr":"127.0.0.1","remote_port":56320,"status":200,"method":"POST","path":"/completion","params":{}}
kallewoof commented 11 months ago

Yeah, fix works for me.