ggerganov / llama.cpp

LLM inference in C/C++
MIT License
67.91k stars 9.74k forks source link

Seg fault when fine tuning in AWS g5 machine with Nvidia A10 card #4257

Closed r78v10a07 closed 7 months ago

r78v10a07 commented 11 months ago

Expected Behavior

I'm trying to fine tune a model on a AWS g5 machine with Nvidia A10 card but I'm getting seg fault.

Current Behavior

Same files are processed in macos M1 and it works fine

Environment and Context

Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         48 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  8
  On-line CPU(s) list:   0-7
Vendor ID:               AuthenticAMD
  Model name:            AMD EPYC 7R32
    CPU family:          23
    Model:               49
    Thread(s) per core:  2
    Core(s) per socket:  4
    Socket(s):           1
    Stepping:            0
    BogoMIPS:            5599.99
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
                          pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma c
                         x16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowpr
                         efetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec
                          xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Virtualization features:
  Hypervisor vendor:     KVM
  Virtualization type:   full
Caches (sum of all):
  L1d:                   128 KiB (4 instances)
  L1i:                   128 KiB (4 instances)
  L2:                    2 MiB (4 instances)
  L3:                    16 MiB (1 instance)
NUMA:
  NUMA node(s):          1
  NUMA node0 CPU(s):     0-7
Vulnerabilities:
  Gather data sampling:  Not affected
  Itlb multihit:         Not affected
  L1tf:                  Not affected
  Mds:                   Not affected
  Meltdown:              Not affected
  Mmio stale data:       Not affected
  Retbleed:              Mitigation; untrained return thunk; SMT enabled with STIBP protection
  Spec store bypass:     Mitigation; Speculative Store Bypass disabled via prctl
  Spectre v1:            Mitigation; usercopy/swapgs barriers and __user pointer sanitization
  Spectre v2:            Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
  Srbds:                 Not affected
  Tsx async abort:       Not affected

Linux ip-10-8-10-56 6.2.0-1011-aws #11~22.04.1-Ubuntu SMP Mon Aug 21 16:27:59 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

$ python3 --version
Python 3.10.12
$ make --version
GNU Make 4.3
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$ g++ --version
g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Failure Information (for bugs)

main: work_size = 1280648 bytes (1.2 MB)
train_opt_callback: iter=     0 sample=1/4206 sched=0.000000 loss=0.000000 |->
src0->type: 14  dst->type: 0
GGML_ASSERT: ggml-cuda.cu:6193: false
Aborted (core dumped)

Steps to Reproduce

Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.

  1. Model: https://huggingface.co/TheBloke/sqlcoder-7B-GGUF/blob/main/sqlcoder-7b.Q5_K_M.gguf

  2. Train data: schema.sql.zip

  3. Command line:

    ./llama.cpp/finetune --model-base models/sqlcoder-7b.Q5_K_M.gguf --checkpoint-in models/chk-lora-sqlcoder-7b.Q5_K_M-LATEST.gguf --checkpoint-out models/chk-lora-sqlcoder-7b.Q5_K_M-ITERATION.gguf --lora-out models/lora-sqlcoder-7b.Q5_K_M-cre_Doc_Template_Mgt-ITERATION.bin --train-data schema.sql --save-every 20 --threads 10 --adam-iter 150 --batch 4 --ctx 128 --use-checkpointing -ngl 1

Failure Logs

Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.

Also, please try to avoid using screenshots if at all possible. Instead, copy/paste the console output and use Github's markdown to cleanly format your logs for easy readability.

Example environment info:

llama.cpp$ git log | head -1
commit 1f5cd83275fabb43f2ae92c30033b384a3eb37b4

Log

main: seed: 1701280008
main: model base = 'models/sqlcoder-7b.Q5_K_M.gguf'
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: NVIDIA A10G, compute capability 8.6
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from models/sqlcoder-7b.Q5_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q5_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  290:                    output.weight q6_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = defog_sqlcoder-7b
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 17
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  20:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q5_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q5_K - Medium
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 4.78 GiB (5.67 BPW)
llm_load_print_meta: general.name   = defog_sqlcoder-7b
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MiB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  = 4742.10 MiB
llm_load_tensors: offloading 1 repeating layers to GPU
llm_load_tensors: offloaded 1/35 layers to GPU
llm_load_tensors: VRAM used: 151.00 MiB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size  =   64.00 MiB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 76.07 MiB
llama_new_context_with_model: VRAM scratch buffer: 73.00 MiB
llama_new_context_with_model: total VRAM used: 224.00 MiB (model: 151.00 MiB, context: 73.00 MiB)
main: init model
print_params: n_vocab:   32000
print_params: n_ctx:     128
print_params: n_embd:    4096
print_params: n_ff:      14336
print_params: n_head:    32
print_params: n_head_kv: 8
print_params: n_layer:   32
print_params: norm_rms_eps          : 0.000010
print_params: rope_freq_base        : 10000.000000
print_params: rope_freq_scale       : 1.000000
print_lora_params: n_rank_attention_norm : 1
print_lora_params: n_rank_wq             : 4
print_lora_params: n_rank_wk             : 4
print_lora_params: n_rank_wv             : 4
print_lora_params: n_rank_wo             : 4
print_lora_params: n_rank_ffn_norm       : 1
print_lora_params: n_rank_w1             : 4
print_lora_params: n_rank_w2             : 4
print_lora_params: n_rank_w3             : 4
print_lora_params: n_rank_tok_embeddings : 4
print_lora_params: n_rank_norm           : 1
print_lora_params: n_rank_output         : 4
main: total train_iterations 0
main: seen train_samples     0
main: seen train_tokens      0
main: completed train_epochs 0
main: lora_size = 88777312 bytes (84.7 MB)
main: opt_size  = 132491200 bytes (126.4 MB)
main: opt iter 0
main: input_size = 65538080 bytes (62.5 MB)
main: compute_size = 7957643872 bytes (7589.0 MB)
main: evaluation order = RIGHT_TO_LEFT
main: tokenize training data
tokenize_file: total number of samples: 4206
main: number of training tokens: 4334
main: number of unique tokens: 212
main: train data seems to have changed. restarting shuffled epoch.
main: begin training
main: work_size = 1280648 bytes (1.2 MB)
train_opt_callback: iter=     0 sample=1/4206 sched=0.000000 loss=0.000000 |->
src0->type: 14  dst->type: 0
GGML_ASSERT: ggml-cuda.cu:6193: false
Aborted (core dumped)
cmp-nct commented 11 months ago

I've no experience with fine tuning, just a few bits: 1) The issue is not a segfault (illegal memory access), it's an assert (a planned hard-abort for unsupported condition) 2) The problem comes from a ADD operation with an unsupported input, in this case a Q6K tensor as src0 The ADD operation supports only fp16 and fp32 as source0 Usually there is a internal conversion step that ensures such operations are always presented with the tensor they support.

Unrelated, I wonder why are some attn_v weights Q5_K and some Q6_K ?

jojju commented 11 months ago

I run into this assert as well trying to offload to the GPU when fine-tuning (on a T4 on Google Colab). I'm guessing this is supposed to work - the -ngl flag exists after all.

ujjwalll commented 8 months ago

I am also facing same issue on Nvidia A10G card on AWS G5, @r78v10a07 have you found any work around for it??

github-actions[bot] commented 7 months ago

This issue was closed because it has been inactive for 14 days since being marked as stale.