gisce / enerdata-predictions

Predict future enerdata from a past scenario
GNU General Public License v2.0
0 stars 0 forks source link

enerdata-predictions

Predict future enerdata from a past scenario

Iteration 0

Get measurements from a CSV file and predict the amount of energy needed for a future date using as a reference the past year events.

Example of use

/usr/bin/python2.7 range.py

Start parsing incoming file lectures.txt
   Takes 19.46158s for 100 registries

Start prediction for all Past CUPS bewteen 2016/12/29 - 2016/12/31
   Takes 0.08047s for 100 registries

Predicted TOTAL consumption of 824 kw between 2016/12/29 - 2016/12/31 based on the last year info

Applying correctional factors
 - 'Set 15% contingency margin' (increase_percent: 15)
    - Result: Total 947.6 kw  (previous 824.0 kw)
   Takes 0.00004s

PREDICTION SUMMARY 

   947.6 kw from 2016/12/29 to 2016/12/31 [2 days]

   + 489.9 kw 2016/12/29
      - 00:00 - 01:00   26.45 kw
      - 01:00 - 02:00   14.95 kw
      - 02:00 - 03:00   11.5 kw
      - 03:00 - 04:00   12.65 kw
      - 04:00 - 05:00   14.95 kw
      - 05:00 - 06:00   13.8 kw
      - 06:00 - 07:00   9.2 kw
      - 07:00 - 08:00   10.35 kw
      - 08:00 - 09:00   19.55 kw
      - 09:00 - 10:00   17.25 kw
      - 10:00 - 11:00   19.55 kw
      - 11:00 - 12:00   26.45 kw
      - 12:00 - 13:00   26.45 kw
      - 13:00 - 14:00   23.0 kw
      - 14:00 - 15:00   24.15 kw
      - 15:00 - 16:00   20.7 kw
      - 16:00 - 17:00   25.3 kw
      - 17:00 - 18:00   20.7 kw
      - 18:00 - 19:00   21.85 kw
      - 19:00 - 20:00   21.85 kw
      - 20:00 - 21:00   31.05 kw
      - 21:00 - 22:00   24.15 kw
      - 22:00 - 23:00   31.05 kw
      - 23:00 - 24:00   23.0 kw

   + 457.7 kw 2016/12/30
      - 00:00 - 01:00   19.55 kw
      - 01:00 - 02:00   14.95 kw
      - 02:00 - 03:00   23.0 kw
      - 03:00 - 04:00   13.8 kw
      - 04:00 - 05:00   9.2 kw
      - 05:00 - 06:00   6.9 kw
      - 06:00 - 07:00   14.95 kw
      - 07:00 - 08:00   14.95 kw
      - 08:00 - 09:00   12.65 kw
      - 09:00 - 10:00   11.5 kw
      - 10:00 - 11:00   17.25 kw
      - 11:00 - 12:00   21.85 kw
      - 12:00 - 13:00   23.0 kw
      - 13:00 - 14:00   26.45 kw
      - 14:00 - 15:00   13.8 kw
      - 15:00 - 16:00   21.85 kw
      - 16:00 - 17:00   18.4 kw
      - 17:00 - 18:00   23.0 kw
      - 18:00 - 19:00   24.15 kw
      - 19:00 - 20:00   19.55 kw
      - 20:00 - 21:00   26.45 kw
      - 21:00 - 22:00   20.7 kw
      - 22:00 - 23:00   29.9 kw
      - 23:00 - 24:00   29.9 kw

   // Applied Margins of '0.15%' and '0%' global

Screenshots

Prediction1

Prediction2