Predict future enerdata from a past scenario
Get measurements from a CSV file and predict the amount of energy needed for a future date using as a reference the past year events.
/usr/bin/python2.7 range.py
Start parsing incoming file lectures.txt
Takes 19.46158s for 100 registries
Start prediction for all Past CUPS bewteen 2016/12/29 - 2016/12/31
Takes 0.08047s for 100 registries
Predicted TOTAL consumption of 824 kw between 2016/12/29 - 2016/12/31 based on the last year info
Applying correctional factors
- 'Set 15% contingency margin' (increase_percent: 15)
- Result: Total 947.6 kw (previous 824.0 kw)
Takes 0.00004s
PREDICTION SUMMARY
947.6 kw from 2016/12/29 to 2016/12/31 [2 days]
+ 489.9 kw 2016/12/29
- 00:00 - 01:00 26.45 kw
- 01:00 - 02:00 14.95 kw
- 02:00 - 03:00 11.5 kw
- 03:00 - 04:00 12.65 kw
- 04:00 - 05:00 14.95 kw
- 05:00 - 06:00 13.8 kw
- 06:00 - 07:00 9.2 kw
- 07:00 - 08:00 10.35 kw
- 08:00 - 09:00 19.55 kw
- 09:00 - 10:00 17.25 kw
- 10:00 - 11:00 19.55 kw
- 11:00 - 12:00 26.45 kw
- 12:00 - 13:00 26.45 kw
- 13:00 - 14:00 23.0 kw
- 14:00 - 15:00 24.15 kw
- 15:00 - 16:00 20.7 kw
- 16:00 - 17:00 25.3 kw
- 17:00 - 18:00 20.7 kw
- 18:00 - 19:00 21.85 kw
- 19:00 - 20:00 21.85 kw
- 20:00 - 21:00 31.05 kw
- 21:00 - 22:00 24.15 kw
- 22:00 - 23:00 31.05 kw
- 23:00 - 24:00 23.0 kw
+ 457.7 kw 2016/12/30
- 00:00 - 01:00 19.55 kw
- 01:00 - 02:00 14.95 kw
- 02:00 - 03:00 23.0 kw
- 03:00 - 04:00 13.8 kw
- 04:00 - 05:00 9.2 kw
- 05:00 - 06:00 6.9 kw
- 06:00 - 07:00 14.95 kw
- 07:00 - 08:00 14.95 kw
- 08:00 - 09:00 12.65 kw
- 09:00 - 10:00 11.5 kw
- 10:00 - 11:00 17.25 kw
- 11:00 - 12:00 21.85 kw
- 12:00 - 13:00 23.0 kw
- 13:00 - 14:00 26.45 kw
- 14:00 - 15:00 13.8 kw
- 15:00 - 16:00 21.85 kw
- 16:00 - 17:00 18.4 kw
- 17:00 - 18:00 23.0 kw
- 18:00 - 19:00 24.15 kw
- 19:00 - 20:00 19.55 kw
- 20:00 - 21:00 26.45 kw
- 21:00 - 22:00 20.7 kw
- 22:00 - 23:00 29.9 kw
- 23:00 - 24:00 29.9 kw
// Applied Margins of '0.15%' and '0%' global