A web application developed in Django+D3 to visualise how topics inferred from Latent Dirichlet Allocation can be used to assist in the unsupervised characterisation of fragmented (LC-MS-MS) metabolomics data.
Demo available at http://ms2lda.org
pipenv --python 2.7
pipenv install
pipenv shell
cd ms2ldaviz
export DJANGO_SETTINGS_MODULE=ms2ldaviz.settings_redisdebug
In their own shell (within pipenv shell) run:
docker run --name some-redis -d -p 6379:6379 redis
docker run --name some-pg -d -p 5432:5432 -e POSTGRES_PASSWORD=j7z3rL40w9 -e POSTGRES_USER=django postgres
and
./start_celery_redisdebug.sh
and
python manage.py migrate
python manage.py createsuperuser
python setup_feat.py
python manage.py runserver
Requires server to be up and running.
Performs 3 steps:
cd ms2ldaviz
./run_gensim.py corpus -f mgf myexp.mgf myexp.corpus.json
./run_gensim.py gensim myexp.corpus.json myexp.ldaresult.json
./run_gensim.py insert myexp.ldaresult.json stefanv myexp
This will exclude the lda info from the json file and write/import a gensim formatted lda dataset.
./run_gensim.py corpus -f mgf myexp.mgf myexp.corpus.json
./run_gensim.py gensim --ldaformat gensim myexp.corpus.json myexp.lda.gensim
./run_gensim.py insert_gensim myexp.corpus.json myexp.lda.gensim stefanv myexp
The last command inserts the gensim lda results into the database.
This can also be done by using the web interface by going to /uploads/upload_gensim_experiment/
url on the ms2lda server.
The gensim result must be tarballed with for example tar -zcf myexp.lda.gensim.tar.gz myexp.lda.gensim*
and then uploaded in the form.
Run ms2lda website using docker-compose with
# Make sure lda/ is filled
docker-compose up -d
# For first time initialize db with
docker-compose run web python manage.py migrate
docker-compose run web python manage.py createsuperuser
docker-compose run web python setup_feat.py
Goto http://localhost:8001 to visit site
To run on different port then 8001 use PORT=8123 docker-compose up -d
.
To clean up run
docker-compose down