ONNX to Keras deep neural network converter.
TensorFlow 2.0
onnx_to_keras(onnx_model, input_names, input_shapes=None, name_policy=None, verbose=True, change_ordering=False) -> {Keras model}
onnx_model
: ONNX model to convert
input_names
: list with graph input names
input_shapes
: override input shapes (experimental)
name_policy
: ['renumerate', 'short', 'default'] override layer names (experimental)
verbose
: detailed output
change_ordering:
change ordering to HWC (experimental)
import onnx
from onnx2keras import onnx_to_keras
# Load ONNX model
onnx_model = onnx.load('resnet18.onnx')
# Call the converter (input - is the main model input name, can be different for your model)
k_model = onnx_to_keras(onnx_model, ['input'])
Keras model will be stored to the k_model
variable. So simple, isn't it?
Using ONNX as intermediate format, you can convert PyTorch model as well.
import numpy as np
import torch
from torch.autograd import Variable
from pytorch2keras.converter import pytorch_to_keras
import torchvision.models as models
if __name__ == '__main__':
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
model = models.resnet18()
model.eval()
k_model = \
pytorch_to_keras(model, input_var, [(3, 224, 224,)], verbose=True, change_ordering=True)
for i in range(3):
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)
pytorch_output = output.data.numpy()
keras_output = k_model.predict(np.transpose(input_np, [0, 2, 3, 1]))
error = np.max(pytorch_output - keras_output)
print('error -- ', error) # Around zero :)
You can try using the snippet below to convert your onnx / PyTorch model to frozen graph. It may be useful for deploy for Tensorflow.js / for Tensorflow for Android / for Tensorflow C-API.
import numpy as np
import torch
from pytorch2keras.converter import pytorch_to_keras
from torch.autograd import Variable
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
# Create and load model
model = Model()
model.load_state_dict(torch.load('model-checkpoint.pth'))
model.eval()
# Make dummy variables (and checking if the model works)
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)
# Convert the model!
k_model = \
pytorch_to_keras(model, input_var, (3, 224, 224),
verbose=True, name_policy='short',
change_ordering=True)
# Save model to SavedModel format
tf.saved_model.save(k_model, "./models")
# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: k_model(x))
full_model = full_model.get_concrete_function(
tf.TensorSpec(k_model.inputs[0].shape, k_model.inputs[0].dtype))
# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()
print("-" * 50)
print("Frozen model layers: ")
for layer in [op.name for op in frozen_func.graph.get_operations()]:
print(layer)
print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)
# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
logdir="./frozen_models",
name="frozen_graph.pb",
as_text=False)
This software is covered by MIT License.