google-deepmind / opro

official code for "Large Language Models as Optimizers"
https://arxiv.org/abs/2309.03409
Apache License 2.0
446 stars 46 forks source link

Large Language Models as Optimizers

This repository contains the code for the paper

Large Language Models as Optimizers\ Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, Xinyun Chen [* Equal Contribution]\ arXiv: 2309.03409

workflow         workflow

Dependency requirements

The code has been verified to work under Python 3.10.13 with the following dependencies:

- absl-py (2.0.0)
- google.generativeai (0.1.0)
- immutabledict (3.0.0)
- openai (0.27.2)

Usage

Prompt optimization

Use opro/optimization/optimize_instructions.py, follow the steps at the top.

A quickstarter:

python optimize_instructions.py --optimizer="gpt-3.5-turbo" --scorer="text-bison" --instruction_pos="Q_begin" --dataset="gsm8k" --task="train" --palm_api_key="<your_palm_api_key>" --openai_api_key="<your_openai_api_key>"

Prompt evaluation

Use opro/evaluation/evaluate_instructions.py, follow the steps at the top.

A quickstarter:

python evaluate_instructions.py --scorer="text-bison" --dataset="gsm8k" --task="test" --instruction_pos="Q_begin" --evaluate_training_fold=false --evaluate_test_fold=true --palm_api_key="<your_palm_api_key>"

Linear regression

Use opro/optimization/optimize_linear_regression.py, follow the steps at the top.

Traveling salesman problem

Use opro/optimization/optimize_tsp.py, follow the steps at the top.

Supported models

The code in this repository currently supports text-bison and GPT models. Alternatively, you may serve your own model and plug it in here, similar to the existing prompting APIs in opro/prompt_utils.py.

Precaution on API costs

Calling the PaLM or GPT APIs for prompt optimization and evaluation may incur unexpectedly large costs. Please carefully estimate the cost and/or start with lighter use (e.g., evaluate on a smaller portion of the benchmark dataset or run optimization for fewer steps) before the formal experimentations, or prompt self-served models instead.

Citation

If you have used our code in your research, please cite our paper:

@article{yang2023large,
  title={Large language models as optimizers},
  author={Yang, Chengrun and Wang, Xuezhi and Lu, Yifeng and Liu, Hanxiao and Le, Quoc V and Zhou, Denny and Chen, Xinyun},
  journal={arXiv preprint arXiv:2309.03409},
  year={2023}
}

Disclaimer: this is not an officially supported Google product.