googleapis / python-aiplatform

A Python SDK for Vertex AI, a fully managed, end-to-end platform for data science and machine learning.
Apache License 2.0
647 stars 349 forks source link

Vertex AI SDK for Python

Gemini API and Generative AI on Vertex AI

.. note::

For Gemini API and Generative AI on Vertex AI, please reference Vertex Generative AI SDK for Python_ .. _Vertex Generative AI SDK for Python: https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest


|GA| |pypi| |versions| |unit-tests| |system-tests| |sample-tests|

Vertex AI_: Google Vertex AI is an integrated suite of machine learning tools and services for building and using ML models with AutoML or custom code. It offers both novices and experts the best workbench for the entire machine learning development lifecycle.

.. |GA| image:: https://img.shields.io/badge/support-ga-gold.svg :target: https://github.com/googleapis/google-cloud-python/blob/main/README.rst#general-availability .. |pypi| image:: https://img.shields.io/pypi/v/google-cloud-aiplatform.svg :target: https://pypi.org/project/google-cloud-aiplatform/ .. |versions| image:: https://img.shields.io/pypi/pyversions/google-cloud-aiplatform.svg :target: https://pypi.org/project/google-cloud-aiplatform/ .. |unit-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-unit-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-unit-tests.html .. |system-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-system-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-system-tests.html .. |sample-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-sample-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-sample-tests.html .. _Vertex AI: https://cloud.google.com/vertex-ai/docs .. _Client Library Documentation: https://cloud.google.com/python/docs/reference/aiplatform/latest .. _Product Documentation: https://cloud.google.com/vertex-ai/docs

Quick Start

In order to use this library, you first need to go through the following steps:

  1. Select or create a Cloud Platform project._
  2. Enable billing for your project._
  3. Enable the Vertex AI API._
  4. Setup Authentication._

.. _Select or create a Cloud Platform project.: https://console.cloud.google.com/project .. _Enable billing for your project.: https://cloud.google.com/billing/docs/how-to/modify-project#enable_billing_for_a_project .. _Enable the Vertex AI API.: https://cloud.google.com/vertex-ai/docs/start/use-vertex-ai-python-sdk .. _Setup Authentication.: https://googleapis.dev/python/google-api-core/latest/auth.html

Installation


Install this library in a `virtualenv`_ using pip. `virtualenv`_ is a tool to
create isolated Python environments. The basic problem it addresses is one of
dependencies and versions, and indirectly permissions.

With `virtualenv`_, it's possible to install this library without needing system
install permissions, and without clashing with the installed system
dependencies.

.. _virtualenv: https://virtualenv.pypa.io/en/latest/

Mac/Linux
^^^^^^^^^

.. code-block:: console

    pip install virtualenv
    virtualenv <your-env>
    source <your-env>/bin/activate
    <your-env>/bin/pip install google-cloud-aiplatform

Windows
^^^^^^^

.. code-block:: console

    pip install virtualenv
    virtualenv <your-env>
    <your-env>\Scripts\activate
    <your-env>\Scripts\pip.exe install google-cloud-aiplatform

Supported Python Versions
^^^^^^^^^^^^^^^^^^^^^^^^^
Python >= 3.8

Deprecated Python Versions
^^^^^^^^^^^^^^^^^^^^^^^^^^
Python <= 3.7.

The last version of this library compatible with Python 3.6 is google-cloud-aiplatform==1.12.1.

Overview

This section provides a brief overview of the Vertex AI SDK for Python. You can also reference the notebooks in vertex-ai-samples_ for examples.

.. _vertex-ai-samples: https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/community/sdk

All publicly available SDK features can be found in the :code:google/cloud/aiplatform directory. Under the hood, Vertex SDK builds on top of GAPIC, which stands for Google API CodeGen. The GAPIC library code sits in :code:google/cloud/aiplatform_v1 and :code:google/cloud/aiplatform_v1beta1, and it is auto-generated from Google's service proto files.

For most developers' programmatic needs, they can follow these steps to figure out which libraries to import:

  1. Look through :code:google/cloud/aiplatform first -- Vertex SDK's APIs will almost always be easier to use and more concise comparing with GAPIC
  2. If the feature that you are looking for cannot be found there, look through :code:aiplatform_v1 to see if it's available in GAPIC
  3. If it is still in beta phase, it will be available in :code:aiplatform_v1beta1

If none of the above scenarios could help you find the right tools for your task, please feel free to open a github issue and send us a feature request.

Importing ^^^^^^^^^ Vertex AI SDK resource based functionality can be used by importing the following namespace:

.. code-block:: Python

from google.cloud import aiplatform

Initialization ^^^^^^^^^^^^^^ Initialize the SDK to store common configurations that you use with the SDK.

.. code-block:: Python

aiplatform.init(
    # your Google Cloud Project ID or number
    # environment default used is not set
    project='my-project',

    # the Vertex AI region you will use
    # defaults to us-central1
    location='us-central1',

    # Google Cloud Storage bucket in same region as location
    # used to stage artifacts
    staging_bucket='gs://my_staging_bucket',

    # custom google.auth.credentials.Credentials
    # environment default credentials used if not set
    credentials=my_credentials,

    # customer managed encryption key resource name
    # will be applied to all Vertex AI resources if set
    encryption_spec_key_name=my_encryption_key_name,

    # the name of the experiment to use to track
    # logged metrics and parameters
    experiment='my-experiment',

    # description of the experiment above
    experiment_description='my experiment description'
)

Datasets ^^^^^^^^ Vertex AI provides managed tabular, text, image, and video datasets. In the SDK, datasets can be used downstream to train models.

To create a tabular dataset:

.. code-block:: Python

my_dataset = aiplatform.TabularDataset.create(
    display_name="my-dataset", gcs_source=['gs://path/to/my/dataset.csv'])

You can also create and import a dataset in separate steps:

.. code-block:: Python

from google.cloud import aiplatform

my_dataset = aiplatform.TextDataset.create(
    display_name="my-dataset")

my_dataset.import_data(
    gcs_source=['gs://path/to/my/dataset.csv'],
    import_schema_uri=aiplatform.schema.dataset.ioformat.text.multi_label_classification
)

To get a previously created Dataset:

.. code-block:: Python

dataset = aiplatform.ImageDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')

Vertex AI supports a variety of dataset schemas. References to these schemas are available under the :code:aiplatform.schema.dataset namespace. For more information on the supported dataset schemas please refer to the Preparing data docs_.

.. _Preparing data docs: https://cloud.google.com/ai-platform-unified/docs/datasets/prepare

Training ^^^^^^^^ The Vertex AI SDK for Python allows you train Custom and AutoML Models.

You can train custom models using a custom Python script, custom Python package, or container.

Preparing Your Custom Code

Vertex AI custom training enables you to train on Vertex AI datasets and produce Vertex AI models. To do so your script must adhere to the following contract:

It must read datasets from the environment variables populated by the training service:

.. code-block:: Python

os.environ['AIP_DATA_FORMAT'] # provides format of data os.environ['AIP_TRAINING_DATA_URI'] # uri to training split os.environ['AIP_VALIDATION_DATA_URI'] # uri to validation split os.environ['AIP_TEST_DATA_URI'] # uri to test split

Please visit Using a managed dataset in a custom training application_ for a detailed overview.

.. _Using a managed dataset in a custom training application: https://cloud.google.com/vertex-ai/docs/training/using-managed-datasets

It must write the model artifact to the environment variable populated by the training service:

.. code-block:: Python

os.environ['AIP_MODEL_DIR']

Running Training

.. code-block:: Python

job = aiplatform.CustomTrainingJob( display_name="my-training-job", script_path="training_script.py", container_uri="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-2:latest", requirements=["gcsfs==0.7.1"], model_serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest", )

model = job.run(my_dataset, replica_count=1, machine_type="n1-standard-4", accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)

In the code block above my_dataset is managed dataset created in the Dataset section above. The model variable is a managed Vertex AI model that can be deployed or exported.

AutoMLs

The Vertex AI SDK for Python supports AutoML tabular, image, text, video, and forecasting.

To train an AutoML tabular model:

.. code-block:: Python

dataset = aiplatform.TabularDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')

job = aiplatform.AutoMLTabularTrainingJob( display_name="train-automl", optimization_prediction_type="regression", optimization_objective="minimize-rmse", )

model = job.run( dataset=dataset, target_column="target_column_name", training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, budget_milli_node_hours=1000, model_display_name="my-automl-model", disable_early_stopping=False, )

Models

To get a model:

.. code-block:: Python

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

To upload a model:

.. code-block:: Python

model = aiplatform.Model.upload( display_name='my-model', artifact_uri="gs://python/to/my/model/dir", serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest", )

To deploy a model:

.. code-block:: Python

endpoint = model.deploy(machine_type="n1-standard-4", min_replica_count=1, max_replica_count=5 machine_type='n1-standard-4', accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)

Please visit Importing models to Vertex AI_ for a detailed overview:

.. _Importing models to Vertex AI: https://cloud.google.com/vertex-ai/docs/general/import-model

Model Evaluation

The Vertex AI SDK for Python currently supports getting model evaluation metrics for all AutoML models.

To list all model evaluations for a model:

.. code-block:: Python

model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')

evaluations = model.list_model_evaluations()

To get the model evaluation resource for a given model:

.. code-block:: Python

model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')

returns the first evaluation with no arguments, you can also pass the evaluation ID

evaluation = model.get_model_evaluation()

eval_metrics = evaluation.metrics

You can also create a reference to your model evaluation directly by passing in the resource name of the model evaluation:

.. code-block:: Python

evaluation = aiplatform.ModelEvaluation( evaluation_name='projects/my-project/locations/us-central1/models/{MODEL_ID}/evaluations/{EVALUATION_ID}')

Alternatively, you can create a reference to your evaluation by passing in the model and evaluation IDs:

.. code-block:: Python

evaluation = aiplatform.ModelEvaluation( evaluation_name={EVALUATION_ID}, model_id={MODEL_ID})

Batch Prediction

To create a batch prediction job:

.. code-block:: Python

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

batch_prediction_job = model.batch_predict( job_display_name='my-batch-prediction-job', instances_format='csv', machine_type='n1-standard-4', gcs_source=['gs://path/to/my/file.csv'], gcs_destination_prefix='gs://path/to/my/batch_prediction/results/', service_account='my-sa@my-project.iam.gserviceaccount.com' )

You can also create a batch prediction job asynchronously by including the sync=False argument:

.. code-block:: Python

batch_prediction_job = model.batch_predict(..., sync=False)

wait for resource to be created

batch_prediction_job.wait_for_resource_creation()

get the state

batch_prediction_job.state

block until job is complete

batch_prediction_job.wait()

Endpoints

To create an endpoint:

.. code-block:: Python

endpoint = aiplatform.Endpoint.create(display_name='my-endpoint')

To deploy a model to a created endpoint:

.. code-block:: Python

model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')

endpoint.deploy(model, min_replica_count=1, max_replica_count=5, machine_type='n1-standard-4', accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)

To get predictions from endpoints:

.. code-block:: Python

endpoint.predict(instances=[[6.7, 3.1, 4.7, 1.5], [4.6, 3.1, 1.5, 0.2]])

To undeploy models from an endpoint:

.. code-block:: Python

endpoint.undeploy_all()

To delete an endpoint:

.. code-block:: Python

endpoint.delete()

Pipelines

To create a Vertex AI Pipeline run and monitor until completion:

.. code-block:: Python

Instantiate PipelineJob object

pl = PipelineJob( display_name="My first pipeline",

  # Whether or not to enable caching
  # True = always cache pipeline step result
  # False = never cache pipeline step result
  # None = defer to cache option for each pipeline component in the pipeline definition
  enable_caching=False,

  # Local or GCS path to a compiled pipeline definition
  template_path="pipeline.json",

  # Dictionary containing input parameters for your pipeline
  parameter_values=parameter_values,

  # GCS path to act as the pipeline root
  pipeline_root=pipeline_root,

)

Execute pipeline in Vertex AI and monitor until completion

pl.run(

Email address of service account to use for the pipeline run

# You must have iam.serviceAccounts.actAs permission on the service account to use it
service_account=service_account,

# Whether this function call should be synchronous (wait for pipeline run to finish before terminating)
# or asynchronous (return immediately)
sync=True

)

To create a Vertex AI Pipeline without monitoring until completion, use submit instead of run:

.. code-block:: Python

Instantiate PipelineJob object

pl = PipelineJob( display_name="My first pipeline",

  # Whether or not to enable caching
  # True = always cache pipeline step result
  # False = never cache pipeline step result
  # None = defer to cache option for each pipeline component in the pipeline definition
  enable_caching=False,

  # Local or GCS path to a compiled pipeline definition
  template_path="pipeline.json",

  # Dictionary containing input parameters for your pipeline
  parameter_values=parameter_values,

  # GCS path to act as the pipeline root
  pipeline_root=pipeline_root,

)

Submit the Pipeline to Vertex AI

pl.submit(

Email address of service account to use for the pipeline run

# You must have iam.serviceAccounts.actAs permission on the service account to use it
service_account=service_account,

)

Explainable AI: Get Metadata

To get metadata in dictionary format from TensorFlow 1 models:

.. code-block:: Python

from google.cloud.aiplatform.explain.metadata.tf.v1 import saved_model_metadata_builder

builder = saved_model_metadata_builder.SavedModelMetadataBuilder( 'gs://python/to/my/model/dir', tags=[tf.saved_model.tag_constants.SERVING] ) generated_md = builder.get_metadata()

To get metadata in dictionary format from TensorFlow 2 models:

.. code-block:: Python

from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder

builder = saved_model_metadata_builder.SavedModelMetadataBuilder('gs://python/to/my/model/dir') generated_md = builder.get_metadata()

To use Explanation Metadata in endpoint deployment and model upload:

.. code-block:: Python

explanation_metadata = builder.get_metadata_protobuf()

To deploy a model to an endpoint with explanation

model.deploy(..., explanation_metadata=explanation_metadata)

To deploy a model to a created endpoint with explanation

endpoint.deploy(..., explanation_metadata=explanation_metadata)

To upload a model with explanation

aiplatform.Model.upload(..., explanation_metadata=explanation_metadata)

Cloud Profiler

Cloud Profiler allows you to profile your remote Vertex AI Training jobs on demand and visualize the results in Vertex AI Tensorboard.

To start using the profiler with TensorFlow, update your training script to include the following:

.. code-block:: Python

from google.cloud.aiplatform.training_utils import cloud_profiler
...
cloud_profiler.init()

Next, run the job with with a Vertex AI TensorBoard instance. For full details on how to do this, visit https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-overview

Finally, visit your TensorBoard in your Google Cloud Console, navigate to the "Profile" tab, and click the Capture Profile button. This will allow users to capture profiling statistics for the running jobs.

Next Steps



-  Read the `Client Library Documentation`_ for Vertex AI
   API to see other available methods on the client.
-  Read the `Vertex AI API Product documentation`_ to learn
   more about the product and see How-to Guides.
-  View this `README`_ to see the full list of Cloud
   APIs that we cover.

.. _Vertex AI API Product documentation:  https://cloud.google.com/vertex-ai/docs
.. _README: https://github.com/googleapis/google-cloud-python/blob/main/README.rst