.. note::
For Gemini API and Generative AI on Vertex AI, please reference Vertex Generative AI SDK for Python
_
.. _Vertex Generative AI SDK for Python: https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest
|GA| |pypi| |versions| |unit-tests| |system-tests| |sample-tests|
Vertex AI
_: Google Vertex AI is an integrated suite of machine learning tools and services for building and using ML models with AutoML or custom code. It offers both novices and experts the best workbench for the entire machine learning development lifecycle.
Client Library Documentation
_Product Documentation
_.. |GA| image:: https://img.shields.io/badge/support-ga-gold.svg :target: https://github.com/googleapis/google-cloud-python/blob/main/README.rst#general-availability .. |pypi| image:: https://img.shields.io/pypi/v/google-cloud-aiplatform.svg :target: https://pypi.org/project/google-cloud-aiplatform/ .. |versions| image:: https://img.shields.io/pypi/pyversions/google-cloud-aiplatform.svg :target: https://pypi.org/project/google-cloud-aiplatform/ .. |unit-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-unit-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-unit-tests.html .. |system-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-system-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-system-tests.html .. |sample-tests| image:: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-sample-tests.svg :target: https://storage.googleapis.com/cloud-devrel-public/python-aiplatform/badges/sdk-sample-tests.html .. _Vertex AI: https://cloud.google.com/vertex-ai/docs .. _Client Library Documentation: https://cloud.google.com/python/docs/reference/aiplatform/latest .. _Product Documentation: https://cloud.google.com/vertex-ai/docs
In order to use this library, you first need to go through the following steps:
Select or create a Cloud Platform project.
_Enable billing for your project.
_Enable the Vertex AI API.
_Setup Authentication.
_.. _Select or create a Cloud Platform project.: https://console.cloud.google.com/project .. _Enable billing for your project.: https://cloud.google.com/billing/docs/how-to/modify-project#enable_billing_for_a_project .. _Enable the Vertex AI API.: https://cloud.google.com/vertex-ai/docs/start/use-vertex-ai-python-sdk .. _Setup Authentication.: https://googleapis.dev/python/google-api-core/latest/auth.html
Installation
Install this library in a `virtualenv`_ using pip. `virtualenv`_ is a tool to
create isolated Python environments. The basic problem it addresses is one of
dependencies and versions, and indirectly permissions.
With `virtualenv`_, it's possible to install this library without needing system
install permissions, and without clashing with the installed system
dependencies.
.. _virtualenv: https://virtualenv.pypa.io/en/latest/
Mac/Linux
^^^^^^^^^
.. code-block:: console
pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-cloud-aiplatform
Windows
^^^^^^^
.. code-block:: console
pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-cloud-aiplatform
Supported Python Versions
^^^^^^^^^^^^^^^^^^^^^^^^^
Python >= 3.8
Deprecated Python Versions
^^^^^^^^^^^^^^^^^^^^^^^^^^
Python <= 3.7.
The last version of this library compatible with Python 3.6 is google-cloud-aiplatform==1.12.1.
Overview
This section provides a brief overview of the Vertex AI SDK for Python. You can also reference the notebooks in vertex-ai-samples
_ for examples.
.. _vertex-ai-samples: https://github.com/GoogleCloudPlatform/vertex-ai-samples/tree/main/notebooks/community/sdk
All publicly available SDK features can be found in the :code:google/cloud/aiplatform
directory.
Under the hood, Vertex SDK builds on top of GAPIC, which stands for Google API CodeGen.
The GAPIC library code sits in :code:google/cloud/aiplatform_v1
and :code:google/cloud/aiplatform_v1beta1
,
and it is auto-generated from Google's service proto files.
For most developers' programmatic needs, they can follow these steps to figure out which libraries to import:
google/cloud/aiplatform
first -- Vertex SDK's APIs will almost always be easier to use and more concise comparing with GAPICaiplatform_v1
to see if it's available in GAPICaiplatform_v1beta1
If none of the above scenarios could help you find the right tools for your task, please feel free to open a github issue and send us a feature request.
Importing ^^^^^^^^^ Vertex AI SDK resource based functionality can be used by importing the following namespace:
.. code-block:: Python
from google.cloud import aiplatform
Initialization ^^^^^^^^^^^^^^ Initialize the SDK to store common configurations that you use with the SDK.
.. code-block:: Python
aiplatform.init(
# your Google Cloud Project ID or number
# environment default used is not set
project='my-project',
# the Vertex AI region you will use
# defaults to us-central1
location='us-central1',
# Google Cloud Storage bucket in same region as location
# used to stage artifacts
staging_bucket='gs://my_staging_bucket',
# custom google.auth.credentials.Credentials
# environment default credentials used if not set
credentials=my_credentials,
# customer managed encryption key resource name
# will be applied to all Vertex AI resources if set
encryption_spec_key_name=my_encryption_key_name,
# the name of the experiment to use to track
# logged metrics and parameters
experiment='my-experiment',
# description of the experiment above
experiment_description='my experiment description'
)
Datasets ^^^^^^^^ Vertex AI provides managed tabular, text, image, and video datasets. In the SDK, datasets can be used downstream to train models.
To create a tabular dataset:
.. code-block:: Python
my_dataset = aiplatform.TabularDataset.create(
display_name="my-dataset", gcs_source=['gs://path/to/my/dataset.csv'])
You can also create and import a dataset in separate steps:
.. code-block:: Python
from google.cloud import aiplatform
my_dataset = aiplatform.TextDataset.create(
display_name="my-dataset")
my_dataset.import_data(
gcs_source=['gs://path/to/my/dataset.csv'],
import_schema_uri=aiplatform.schema.dataset.ioformat.text.multi_label_classification
)
To get a previously created Dataset:
.. code-block:: Python
dataset = aiplatform.ImageDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')
Vertex AI supports a variety of dataset schemas. References to these schemas are available under the
:code:aiplatform.schema.dataset
namespace. For more information on the supported dataset schemas please refer to the
Preparing data docs
_.
.. _Preparing data docs: https://cloud.google.com/ai-platform-unified/docs/datasets/prepare
Training ^^^^^^^^ The Vertex AI SDK for Python allows you train Custom and AutoML Models.
You can train custom models using a custom Python script, custom Python package, or container.
Preparing Your Custom Code
Vertex AI custom training enables you to train on Vertex AI datasets and produce Vertex AI models. To do so your script must adhere to the following contract:
It must read datasets from the environment variables populated by the training service:
.. code-block:: Python
os.environ['AIP_DATA_FORMAT'] # provides format of data os.environ['AIP_TRAINING_DATA_URI'] # uri to training split os.environ['AIP_VALIDATION_DATA_URI'] # uri to validation split os.environ['AIP_TEST_DATA_URI'] # uri to test split
Please visit Using a managed dataset in a custom training application
_ for a detailed overview.
.. _Using a managed dataset in a custom training application: https://cloud.google.com/vertex-ai/docs/training/using-managed-datasets
It must write the model artifact to the environment variable populated by the training service:
.. code-block:: Python
os.environ['AIP_MODEL_DIR']
Running Training
.. code-block:: Python
job = aiplatform.CustomTrainingJob( display_name="my-training-job", script_path="training_script.py", container_uri="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-2:latest", requirements=["gcsfs==0.7.1"], model_serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest", )
model = job.run(my_dataset, replica_count=1, machine_type="n1-standard-4", accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)
In the code block above my_dataset
is managed dataset created in the Dataset
section above. The model
variable is a managed Vertex AI model that can be deployed or exported.
The Vertex AI SDK for Python supports AutoML tabular, image, text, video, and forecasting.
To train an AutoML tabular model:
.. code-block:: Python
dataset = aiplatform.TabularDataset('projects/my-project/location/us-central1/datasets/{DATASET_ID}')
job = aiplatform.AutoMLTabularTrainingJob( display_name="train-automl", optimization_prediction_type="regression", optimization_objective="minimize-rmse", )
model = job.run( dataset=dataset, target_column="target_column_name", training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, budget_milli_node_hours=1000, model_display_name="my-automl-model", disable_early_stopping=False, )
To get a model:
.. code-block:: Python
model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')
To upload a model:
.. code-block:: Python
model = aiplatform.Model.upload( display_name='my-model', artifact_uri="gs://python/to/my/model/dir", serving_container_image_uri="us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest", )
To deploy a model:
.. code-block:: Python
endpoint = model.deploy(machine_type="n1-standard-4", min_replica_count=1, max_replica_count=5 machine_type='n1-standard-4', accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)
Please visit Importing models to Vertex AI
_ for a detailed overview:
.. _Importing models to Vertex AI: https://cloud.google.com/vertex-ai/docs/general/import-model
The Vertex AI SDK for Python currently supports getting model evaluation metrics for all AutoML models.
To list all model evaluations for a model:
.. code-block:: Python
model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')
evaluations = model.list_model_evaluations()
To get the model evaluation resource for a given model:
.. code-block:: Python
model = aiplatform.Model('projects/my-project/locations/us-central1/models/{MODEL_ID}')
evaluation = model.get_model_evaluation()
eval_metrics = evaluation.metrics
You can also create a reference to your model evaluation directly by passing in the resource name of the model evaluation:
.. code-block:: Python
evaluation = aiplatform.ModelEvaluation( evaluation_name='projects/my-project/locations/us-central1/models/{MODEL_ID}/evaluations/{EVALUATION_ID}')
Alternatively, you can create a reference to your evaluation by passing in the model and evaluation IDs:
.. code-block:: Python
evaluation = aiplatform.ModelEvaluation( evaluation_name={EVALUATION_ID}, model_id={MODEL_ID})
To create a batch prediction job:
.. code-block:: Python
model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')
batch_prediction_job = model.batch_predict( job_display_name='my-batch-prediction-job', instances_format='csv', machine_type='n1-standard-4', gcs_source=['gs://path/to/my/file.csv'], gcs_destination_prefix='gs://path/to/my/batch_prediction/results/', service_account='my-sa@my-project.iam.gserviceaccount.com' )
You can also create a batch prediction job asynchronously by including the sync=False
argument:
.. code-block:: Python
batch_prediction_job = model.batch_predict(..., sync=False)
batch_prediction_job.wait_for_resource_creation()
batch_prediction_job.state
batch_prediction_job.wait()
To create an endpoint:
.. code-block:: Python
endpoint = aiplatform.Endpoint.create(display_name='my-endpoint')
To deploy a model to a created endpoint:
.. code-block:: Python
model = aiplatform.Model('/projects/my-project/locations/us-central1/models/{MODEL_ID}')
endpoint.deploy(model, min_replica_count=1, max_replica_count=5, machine_type='n1-standard-4', accelerator_type='NVIDIA_TESLA_K80', accelerator_count=1)
To get predictions from endpoints:
.. code-block:: Python
endpoint.predict(instances=[[6.7, 3.1, 4.7, 1.5], [4.6, 3.1, 1.5, 0.2]])
To undeploy models from an endpoint:
.. code-block:: Python
endpoint.undeploy_all()
To delete an endpoint:
.. code-block:: Python
endpoint.delete()
To create a Vertex AI Pipeline run and monitor until completion:
.. code-block:: Python
pl = PipelineJob( display_name="My first pipeline",
# Whether or not to enable caching
# True = always cache pipeline step result
# False = never cache pipeline step result
# None = defer to cache option for each pipeline component in the pipeline definition
enable_caching=False,
# Local or GCS path to a compiled pipeline definition
template_path="pipeline.json",
# Dictionary containing input parameters for your pipeline
parameter_values=parameter_values,
# GCS path to act as the pipeline root
pipeline_root=pipeline_root,
)
pl.run(
# You must have iam.serviceAccounts.actAs permission on the service account to use it
service_account=service_account,
# Whether this function call should be synchronous (wait for pipeline run to finish before terminating)
# or asynchronous (return immediately)
sync=True
)
To create a Vertex AI Pipeline without monitoring until completion, use submit
instead of run
:
.. code-block:: Python
pl = PipelineJob( display_name="My first pipeline",
# Whether or not to enable caching
# True = always cache pipeline step result
# False = never cache pipeline step result
# None = defer to cache option for each pipeline component in the pipeline definition
enable_caching=False,
# Local or GCS path to a compiled pipeline definition
template_path="pipeline.json",
# Dictionary containing input parameters for your pipeline
parameter_values=parameter_values,
# GCS path to act as the pipeline root
pipeline_root=pipeline_root,
)
pl.submit(
# You must have iam.serviceAccounts.actAs permission on the service account to use it
service_account=service_account,
)
To get metadata in dictionary format from TensorFlow 1 models:
.. code-block:: Python
from google.cloud.aiplatform.explain.metadata.tf.v1 import saved_model_metadata_builder
builder = saved_model_metadata_builder.SavedModelMetadataBuilder( 'gs://python/to/my/model/dir', tags=[tf.saved_model.tag_constants.SERVING] ) generated_md = builder.get_metadata()
To get metadata in dictionary format from TensorFlow 2 models:
.. code-block:: Python
from google.cloud.aiplatform.explain.metadata.tf.v2 import saved_model_metadata_builder
builder = saved_model_metadata_builder.SavedModelMetadataBuilder('gs://python/to/my/model/dir') generated_md = builder.get_metadata()
To use Explanation Metadata in endpoint deployment and model upload:
.. code-block:: Python
explanation_metadata = builder.get_metadata_protobuf()
model.deploy(..., explanation_metadata=explanation_metadata)
endpoint.deploy(..., explanation_metadata=explanation_metadata)
aiplatform.Model.upload(..., explanation_metadata=explanation_metadata)
Cloud Profiler allows you to profile your remote Vertex AI Training jobs on demand and visualize the results in Vertex AI Tensorboard.
To start using the profiler with TensorFlow, update your training script to include the following:
.. code-block:: Python
from google.cloud.aiplatform.training_utils import cloud_profiler
...
cloud_profiler.init()
Next, run the job with with a Vertex AI TensorBoard instance. For full details on how to do this, visit https://cloud.google.com/vertex-ai/docs/experiments/tensorboard-overview
Finally, visit your TensorBoard in your Google Cloud Console, navigate to the "Profile" tab, and click the Capture Profile
button. This will allow users to capture profiling statistics for the running jobs.
Next Steps
- Read the `Client Library Documentation`_ for Vertex AI
API to see other available methods on the client.
- Read the `Vertex AI API Product documentation`_ to learn
more about the product and see How-to Guides.
- View this `README`_ to see the full list of Cloud
APIs that we cover.
.. _Vertex AI API Product documentation: https://cloud.google.com/vertex-ai/docs
.. _README: https://github.com/googleapis/google-cloud-python/blob/main/README.rst