gorkemcanates / Dual-Cross-Attention

Official Pytorch implementation of Dual Cross-Attention for Medical Image Segmentation
MIT License
102 stars 12 forks source link

Dual-Cross-Attention for Medical Image Segmentation

Official Pytorch implementation of the paper Dual-Cross-Attention for Medical Image Segmentation

dca

We propose Dual Cross-Attention (DCA), a simple yet effective attention module that is able to enhance skip-connections in U-Net-based architectures for medical image segmentation. Our proposed module addresses the semantic gap between encoder and decoder features by sequentially capturing channel and spatial dependencies across multi-scale encoder features.

Benchmark Results

We test our method on GlaS, MoNuSeg, Kvasir-Seg, CVC-ClinicDB and Synapse datasets.

Params GlaS GlaS MoNuSeg MoNuSeg CVC-ClinicDB CVC-ClinicDB Kvasir-Seg Kvasir-Seg Synapse Synapse
DSC IoU DSC IoU DSC IoU DSC IoU DSC IoU
U-net 8.64M 0.8887 0.7998 0.7714 0.6279 0.8963 0.8143 0.8299 0.7101 0.7855 0.6737
U-Net(DCA) 8.75M 0.8966 0.8129 0.7813 0.6411 0.8953 0.8128 0.8403 0.7253 0.7898 0.6797
ResUnet++ 13.1M 0.8543 0.7462 0.7568 0.6087 0.8946 0.8114 0.8226 0.6993 0.7591 0.6461
ResUnet++(DCA) 13.1M 0.8735 0.7756 0.7740 0.6313 0.9019 0.8232 0.8207 0.6974 0.7735 0.6643
MultiResUnet 7.24M 0.8899 0.8018 0.7699 0.6259 0.8952 0.8135 0.8134 0.6866 0.7812 0.6730
MultiResUnet (DCA) 7.35M 0.8886 0.7998 0.7852 0.6463 0.8995 0.8191 0.8232 0.7000 0.7950 0.6865
R2Unet 9.78M 0.8516 0.7426 0.7820 0.6420 0.8812 0.7888 0.8107 0.6828 0.7586 0.6394
R2Unet(DCA) 9.89M 0.8721 0.7737 0.7852 0.6464 0.8839 0.7928 0.8219 0.6989 0.7590 0.6485
V-Net 35.97M 0.8878 0.7985 0.7479 0.5974 0.8809 0.7902 0.8079 0.6807 0.7927 0.6858
V-Net(DCA) 36.08M 0.8903 0.8027 0.7753 0.6331 0.8946 0.8107 0.8192 0.6953 0.7958 0.6900
DoubleUnet 29.68M 0.8907 0.8030 0.7716 0.6282 0.9020 0.8235 0.8440 0.7308 0.7976 0.6931
DoubleUnet (DCA) 30.68M 0.8990 0.8168 0.7950 0.6597 0.9086 0.8347 0.8516 0.7434 0.8022 0.6980

Citations

If you find this repo useful, please cite:

@misc{ates2023dual,
      title={Dual Cross-Attention for Medical Image Segmentation}, 
      author={Gorkem Can Ates and Prasoon Mohan and Emrah Celik},
      year={2023},
      eprint={2303.17696},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Contact

Gorkem Can Ates (g.canates@gmail.com)