objdet
object detection algorithms
这个仓库旨在实现常用的目标检测算法,主要参考如下:
图片来自于deep_learning_object_detection
论文资料
小目标检测
遮挡目标检测
- Repulsion Loss: Detecting Pedestrians in a Crowd
domain目标检测
文本检测
- Deep Direct Regression for Multi-Oriented Scene Text Detection
- TextBoxes: A Fast Text Detector with a Single Deep Neural Network
- Detecting Text in Natural Image with Connectionist Text Proposal Network
- R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection
- EAST: An Efficient and Accurate Scene Text Detector
- Detecting Oriented Text in Natural Images by Linking Segments
- Arbitrary-Oriented Scene Text Detection via Rotation Proposals
- Scene Text Detection via Holistic, Multi-Channel Prediction
- Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection
类别不平衡目标检测
- Solution for Large-Scale Hierarchical Object Detection Datasets with Incomplete Annotation and Data Imbalance
小数据集目标检测
- Comparison Detector: A novel object detection method for small dataset
弱监督目标检测
- Weakly Supervised Deep Detection Networks
非极大值抑制
- Learning non-maximum suppression
- Improving Object Detection With One Line of Code,soft-nms
困难样本采样策略
- Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors
回归框loss
目前常用的回归框loss有l2 loss,smooth l1 loss和IoU loss。
网络实现
非极大值抑制
困难样例学习
- Training Region-based Object Detectors with Online Hard Example Mining,非常有效的针对Regin-based目标检测模型的在线困难样例学习策略。
数据集实现
用法
可视化
visdom
# 在tmux或者另一个终端中开启可视化服务器visdom
python -m visdom.server
# 然后在浏览器中查看127.0.0.1:9097
训练
# 训练模型
python train.py
校验
# 校验模型
python validate.py
测试
# 测试模型
python test.py
TODO