guillermo-navas-palencia / optbinning

Optimal binning: monotonic binning with constraints. Support batch & stream optimal binning. Scorecard modelling and counterfactual explanations.
http://gnpalencia.org/optbinning/
Apache License 2.0
459 stars 100 forks source link
batch-processing binning counterfactual-explanations credit-scoring mdlp optimization python scorecard stream streaming-data woe woebinning

========== OptBinning

.. image:: https://github.com/guillermo-navas-palencia/optbinning/workflows/CI/badge.svg :target: https://github.com/guillermo-navas-palencia/optbinning/workflows/CI/badge.svg

.. image:: https://img.shields.io/github/license/guillermo-navas-palencia/optbinning :target: https://img.shields.io/github/license/guillermo-navas-palencia/optbinning

.. image:: https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue :target: https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue

.. image:: https://img.shields.io/pypi/v/optbinning?color=blueviolet :target: https://img.shields.io/pypi/v/optbinning?color=blueviolet

.. image:: https://static.pepy.tech/badge/optbinning :target: https://pepy.tech/project/optbinning

.. image:: https://static.pepy.tech/badge/optbinning/month :target: https://pepy.tech/project/optbinning/month

OptBinning is a library written in Python implementing a rigorous and flexible mathematical programming formulation to solve the optimal binning problem for a binary, continuous and multiclass target type, incorporating constraints not previously addressed.

.. list-table::

* - .. figure:: doc/source/_images/binning_binary.png

  - .. figure:: doc/source/_images/binning_data_stream.gif

.. list-table::

* - .. figure:: doc/source/_images/binning_2d_readme.png

  - .. figure:: doc/source/_images/binning_2d_readme_woe.png

.. contents:: Table of Contents

Installation

To install the current release of OptBinning from PyPI:

.. code-block:: text

pip install optbinning

To include batch and stream binning algorithms (this option is not required for most users):

.. code-block:: text

pip install optbinning[distributed]

To include support for the ecos <https://github.com/embotech/ecos>_ solver:

.. code-block:: text

pip install optbinning[ecos]

To install from source, download or clone the git repository

.. code-block:: text

git clone https://github.com/guillermo-navas-palencia/optbinning.git cd optbinning python setup.py install

Dependencies

OptBinning requires

OptBinning[distributed] requires additional packages

Getting started

Please visit the OptBinning documentation (current release) http://gnpalencia.org/optbinning/. If your are new to OptBinning, you can get started following the tutorials <http://gnpalencia.org/optbinning/tutorials.html>_ and checking the API references.

Tutorials

Example: Optimal binning with binary target

Let's load a well-known dataset from the UCI repository and choose a variable to discretize and the binary target.

.. code-block:: python

import pandas as pd from sklearn.datasets import load_breast_cancer

data = load_breast_cancer() df = pd.DataFrame(data.data, columns=data.feature_names)

variable = "mean radius" x = df[variable].values y = data.target

Import and instantiate an OptimalBinning object class. We pass the variable name, its data type, and a solver, in this case, we choose the constraint programming solver. Fit the optimal binning object with arrays x and y.

.. code-block:: python

from optbinning import OptimalBinning optb = OptimalBinning(name=variable, dtype="numerical", solver="cp") optb.fit(x, y)

Check status and retrieve optimal split points

.. code-block:: python

optb.status 'OPTIMAL'

optb.splits array([11.42500019, 12.32999992, 13.09499979, 13.70499992, 15.04500008, 16.92500019])

The optimal binning algorithms return a binning table; a binning table displays the binned data and several metrics for each bin. Call the method build, which returns a pandas.DataFrame.

.. code-block:: python

optb.binning_table.build()

.. code-block:: text

                  Bin  Count  Count (%)  Non-event  Event  Event rate       WoE        IV        JS

0 [-inf, 11.43) 118 0.207381 3 115 0.974576 -3.12517 0.962483 0.087205 1 [11.43, 12.33) 79 0.138840 3 76 0.962025 -2.71097 0.538763 0.052198 2 [12.33, 13.09) 68 0.119508 7 61 0.897059 -1.64381 0.226599 0.025513 3 [13.09, 13.70) 49 0.086116 10 39 0.795918 -0.839827 0.052131 0.006331 4 [13.70, 15.05) 83 0.145870 28 55 0.662651 -0.153979 0.003385 0.000423 5 [15.05, 16.93) 54 0.094903 44 10 0.185185 2.00275 0.359566 0.038678 6 [16.93, inf) 118 0.207381 117 1 0.008475 5.28332 2.900997 0.183436 7 Special 0 0.000000 0 0 0.000000 0 0.000000 0.000000 8 Missing 0 0.000000 0 0 0.000000 0 0.000000 0.000000 Totals 569 1.000000 212 357 0.627417 5.043925 0.393784

You can use the method plot to visualize the histogram and WoE or event rate curve. Note that the Bin ID corresponds to the binning table index.

.. code-block:: python

optb.binning_table.plot(metric="woe")

.. image:: doc/source/_images/binning_readme_example_woe.png :target: doc/source/_images/binning_readme_example_woe.png

Optionally, you can show the binning plot with the actual bin widths.

.. code-block:: python

optb.binning_table.plot(metric="woe", style="actual", add_special=False, add_missing=False)

.. image:: doc/source/_images/binning_readme_example_split_woe.png :target: doc/source/_images/binning_readme_example_split_woe.png

Now that we have checked the binned data, we can transform our original data into WoE or event rate values.

.. code-block:: python

x_transform_woe = optb.transform(x, metric="woe") x_transform_event_rate = optb.transform(x, metric="event_rate")

The analysis method performs a statistical analysis of the binning table, computing the statistics Gini index, Information Value (IV), Jensen-Shannon divergence, and the quality score. Additionally, several statistical significance tests between consecutive bins of the contingency table are performed.

.. code-block:: python

optb.binning_table.analysis()

.. code-block:: text


OptimalBinning: Binary Binning Table Analysis

 General metrics

   Gini index               0.87541620
   IV (Jeffrey)             5.04392547
   JS (Jensen-Shannon)      0.39378376
   Hellinger                0.47248971
   Triangular               1.25592041
   KS                       0.72862164
   HHI                      0.15727342
   HHI (normalized)         0.05193260
   Cramer's V               0.80066760
   Quality score            0.00000000

 Monotonic trend            descending

 Significance tests

   Bin A  Bin B  t-statistic       p-value  P[A > B]      P[B > A]
       0      1     0.252432  6.153679e-01  0.684380  3.156202e-01
       1      2     2.432829  1.188183e-01  0.948125  5.187465e-02
       2      3     2.345804  1.256207e-01  0.937874  6.212635e-02
       3      4     2.669235  1.023052e-01  0.955269  4.473083e-02
       4      5    29.910964  4.523477e-08  1.000000  9.814594e-12
       5      6    19.324617  1.102754e-05  0.999999  1.216668e-06

Print overview information about the options settings, problem statistics, and the solution of the computation.

.. code-block:: python

optb.information(print_level=2)

.. code-block:: text

optbinning (Version 0.20.0) Copyright (c) 2019-2024 Guillermo Navas-Palencia, Apache License 2.0

 Begin options
   name                         mean radius   * U
   dtype                          numerical   * d
   prebinning_method                   cart   * d
   solver                                cp   * d
   divergence                            iv   * d
   max_n_prebins                         20   * d
   min_prebin_size                     0.05   * d
   min_n_bins                            no   * d
   max_n_bins                            no   * d
   min_bin_size                          no   * d
   max_bin_size                          no   * d
   min_bin_n_nonevent                    no   * d
   max_bin_n_nonevent                    no   * d
   min_bin_n_event                       no   * d
   max_bin_n_event                       no   * d
   monotonic_trend                     auto   * d
   min_event_rate_diff                    0   * d
   max_pvalue                            no   * d
   max_pvalue_policy            consecutive   * d
   gamma                                  0   * d
   class_weight                          no   * d
   cat_cutoff                            no   * d
   user_splits                           no   * d
   user_splits_fixed                     no   * d
   special_codes                         no   * d
   split_digits                          no   * d
   mip_solver                           bop   * d
   time_limit                           100   * d
   verbose                            False   * d
 End options

 Name    : mean radius
 Status  : OPTIMAL

 Pre-binning statistics
   Number of pre-bins                     9
   Number of refinements                  1

 Solver statistics
   Type                                  cp
   Number of booleans                    26
   Number of branches                    58
   Number of conflicts                    0
   Objective value                  5043922
   Best objective bound             5043922

 Timing
   Total time                          0.04 sec
   Pre-processing                      0.00 sec   (  0.33%)
   Pre-binning                         0.00 sec   (  5.54%)
   Solver                              0.04 sec   ( 93.03%)
     model generation                  0.03 sec   ( 85.61%)
     optimizer                         0.01 sec   ( 14.39%)
   Post-processing                     0.00 sec   (  0.30%)

Example: Optimal binning 2D with binary target

In this case, we choose two variables to discretized and the binary target.

.. code-block:: python

import pandas as pd from sklearn.datasets import load_breast_cancer

data = load_breast_cancer() df = pd.DataFrame(data.data, columns=data.feature_names)

variable1 = "mean radius" variable2 = "worst concavity" x = df[variable1].values y = df[variable2].values z = data.target

Import and instantiate an OptimalBinning2D object class. We pass the variable names, and monotonic trends. Fit the optimal binning object with arrays x, y and z.

.. code-block:: python

from optbinning import OptimalBinning2D optb = OptimalBinning2D(name_x=variable1, name_y=variable2, monotonic_trend_x="descending", monotonic_trend_y="descending", min_bin_size=0.05) optb.fit(x, y, z)

Show binning table:

.. code-block:: python

optb.binning_table.build()

.. code-block:: text

               Bin x         Bin y  Count  Count (%)  Non-event  Event  Event rate       WoE        IV        JS

0 (-inf, 13.70) (-inf, 0.21) 219 0.384886 1 218 0.995434 -4.863346 2.946834 0.199430 1 [13.70, inf) (-inf, 0.21) 48 0.084359 5 43 0.895833 -1.630613 0.157946 0.017811 2 (-inf, 13.09) [0.21, 0.38) 48 0.084359 1 47 0.979167 -3.328998 0.422569 0.037010 3 [13.09, 15.05) [0.21, 0.38) 46 0.080844 17 29 0.630435 -0.012933 0.000013 0.000002 4 [15.05, inf) [0.21, 0.32) 32 0.056239 29 3 0.093750 2.789833 0.358184 0.034271 5 [15.05, inf) [0.32, inf) 129 0.226714 128 1 0.007752 5.373180 3.229133 0.201294 6 (-inf, 15.05) [0.38, inf) 47 0.082601 31 16 0.340426 1.182548 0.119920 0.014173 7 Special Special 0 0.000000 0 0 0.000000 0.000000 0.000000 0.000000 8 Missing Missing 0 0.000000 0 0 0.000000 0.000000 0.000000 0.000000 Totals 569 1.000000 212 357 0.627417 7.234600 0.503991

Similar to the optimal binning, you can generate a histogram 2D to visualize WoE and event rate.

.. code-block:: python

optb.binning_table.plot(metric="event_rate")

.. image:: doc/source/_images/binning_2d_readme_example.png :target: doc/source/_images/binning_2d_readme_example.png

Example: Scorecard with continuous target

Let's load the California housing dataset.

.. code-block:: python

import pandas as pd

from sklearn.datasets import fetch_california_housing from sklearn.linear_model import HuberRegressor

from optbinning import BinningProcess from optbinning import Scorecard

data = fetch_california_housing()

target = "target" variable_names = data.feature_names X = pd.DataFrame(data.data, columns=variable_names) y = data.target

Instantiate a binning process, an estimator, and a scorecard with scaling method and reverse mode.

.. code-block:: python

binning_process = BinningProcess(variable_names)

estimator = HuberRegressor(max_iter=200)

scorecard = Scorecard(binning_process=binning_process, estimator=estimator, scaling_method="min_max", scaling_method_params={"min": 0, "max": 100}, reverse_scorecard=True)

scorecard.fit(X, y)

Print overview information about the options settings, problems statistics, and the number of selected variables after the binning process.

.. code-block:: python

scorecard.information(print_level=2)

.. code-block:: text

optbinning (Version 0.20.0) Copyright (c) 2019-2024 Guillermo Navas-Palencia, Apache License 2.0

 Begin options
   binning_process                      yes   * U
   estimator                            yes   * U
   scaling_method                   min_max   * U
   scaling_method_params                yes   * U
   intercept_based                    False   * d
   reverse_scorecard                   True   * U
   rounding                           False   * d
   verbose                            False   * d
 End options

 Statistics
   Number of records                  20640
   Number of variables                    8
   Target type                   continuous

   Number of numerical                    8
   Number of categorical                  0
   Number of selected                     8

 Timing
   Total time                          2.31 sec
   Binning process                     1.83 sec   ( 79.00%)
   Estimator                           0.41 sec   ( 17.52%)
   Build scorecard                     0.08 sec   (  3.40%)
     rounding                          0.00 sec   (  0.00%)

.. code-block:: python

scorecard.table(style="summary")

Two scorecard styles are available: style="summary" shows the variable name, and their corresponding bins and assigned points; style="detailed" adds information from the corresponding binning table.

.. code-block:: text

    Variable                 Bin     Points

0 MedInc [-inf, 1.90) 9.869224 1 MedInc [1.90, 2.16) 10.896940 2 MedInc [2.16, 2.37) 11.482997 3 MedInc [2.37, 2.66) 12.607805 4 MedInc [2.66, 2.88) 13.609078 .. ... ... ... 2 Longitude [-118.33, -118.26) 10.470401 3 Longitude [-118.26, -118.16) 9.092391 4 Longitude [-118.16, inf) 10.223936 5 Longitude Special 1.376862 6 Longitude Missing 1.376862

[94 rows x 3 columns]

.. code-block:: python

scorecard.table(style="detailed")

.. code-block:: text

    Variable  Bin id                 Bin  Count  Count (%)  ...  Zeros count       WoE        IV  Coefficient     Points

0 MedInc 0 [-inf, 1.90) 2039 0.098789 ... 0 -0.969609 0.095786 0.990122 9.869224 1 MedInc 1 [1.90, 2.16) 1109 0.053731 ... 0 -0.836618 0.044952 0.990122 10.896940 2 MedInc 2 [2.16, 2.37) 1049 0.050824 ... 0 -0.760779 0.038666 0.990122 11.482997 3 MedInc 3 [2.37, 2.66) 1551 0.075145 ... 0 -0.615224 0.046231 0.990122 12.607805 4 MedInc 4 [2.66, 2.88) 1075 0.052083 ... 0 -0.485655 0.025295 0.990122 13.609078 .. ... ... ... ... ... ... ... ... ... ... ... 2 Longitude 2 [-118.33, -118.26) 1120 0.054264 ... 0 -0.011006 0.000597 0.566265 10.470401 3 Longitude 3 [-118.26, -118.16) 1127 0.054603 ... 0 -0.322802 0.017626 0.566265 9.092391 4 Longitude 4 [-118.16, inf) 6530 0.316376 ... 0 -0.066773 0.021125 0.566265 10.223936 5 Longitude 5 Special 0 0.000000 ... 0 -2.068558 0.000000 0.566265 1.376862 6 Longitude 6 Missing 0 0.000000 ... 0 -2.068558 0.000000 0.566265 1.376862

[94 rows x 14 columns]

Compute score and predicted target using the fitted estimator.

.. code-block:: python

score = scorecard.score(X) y_pred = scorecard.predict(X)

Example: Counterfactual explanations for scorecard with continuous target

First, we load the dataset and a scorecard previously developed.

.. code-block:: python

import pandas as pd

from optbinning import Scorecard from optbinning.scorecard import Counterfactual

from sklearn.datasets import load_boston

data = load_boston() X = pd.DataFrame(data.data, columns=data.feature_names)

scorecard = Scorecard.load("myscorecard.pkl")

We create a new Counterfactual instance that is fitted with the dataset used during the scorecard development. Then, we select a sample from which to generate counterfactual explanations.

.. code-block:: python

cf = Counterfactual(scorecard=scorecard) cf.fit(X)

query = X.iloc[0, :].to_frame().T

The scorecard model predicts 26.8. However, we would like to find out what needs to be changed to return a prediction greater or equal to 30.

.. code-block:: python

query CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.09 1.0 296.0 15.3 396.9 4.98

scorecard.predict(query) array([26.83423364])

We can generate a single counterfactual explanation:

.. code-block:: python

cf.generate(query=query, y=30, outcome_type="continuous", n_cf=1, max_changes=3, hard_constraints=["min_outcome"])

cf.status 'OPTIMAL'

cf.display(show_only_changes=True, show_outcome=True) CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT outcome 0 [0.04, 0.07) - - - [0.45, 0.50) [6.94, 7.44) - - - - - - - 31.28763

Or simultaneously three counterfactuals, enforcing diversity on the feature values and selecting only a few actionable features.

.. code-block:: python

cf.generate(query=query, y=30, outcome_type="continuous", n_cf=3, max_changes=3, hard_constraints=["diversity_values", "min_outcome"], actionable_features=["CRIM", "NOX", "RM", "PTRATIO"])

cf.status 'OPTIMAL'

cf.display(show_only_changes=True, show_outcome=True) CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT outcome 0 [0.03, 0.04) - - - [0.42, 0.45) [6.94, 7.44) - - - - - - - 31.737844 0 [0.04, 0.07) - - - - [7.44, inf) - - - - [17.85, 18.55) - - 36.370086 0 - - - - [0.45, 0.50) [6.68, 6.94) - - - - [-inf, 15.15) - - 30.095258

Benchmarks

The following table shows how OptBinning compares to scorecardpy <https://github.com/ShichenXie/scorecardpy> 0.1.9.1.1 on a selection of variables from the public dataset, Home Credit Default Risk - Kaggle’s competition Link <https://www.kaggle.com/c/home-credit-default-risk/data>. This dataset contains 307511 samples.The experiments were run on Intel(R) Core(TM) i5-3317 CPU at 1.70GHz, using a single core, running Linux. For scorecardpy, we use default settings only increasing the maximum number of bins bin_num_limit=20. For OptBinning, we use default settings (max_n_prebins=20) only changing the maximum allowed p-value between consecutive bins, max_pvalue=0.05.

To compare softwares we use the shifted geometric mean, typically used in mathematical optimization benchmarks: http://plato.asu.edu/bench.html. Using the shifted (by 1 second) geometric mean we found that OptBinning is 17x faster than scorecardpy, with an average IV increment of 12%. Besides the speed and IV gains, OptBinning includes many more constraints and monotonicity options.

+----------------------------+------------------+----------------+-----------------+---------------+ | Variable | scorecardpy_time | scorecardpy_IV | optbinning_time | optbinning_IV | +============================+==================+================+=================+===============+ | AMT_INCOME_TOTAL | 6.18 s | 0.010606 | 0.363 s | 0.011705 | +----------------------------+------------------+----------------+-----------------+---------------+ | NAME_CONTRACT_TYPE (C) | 3.72 s | 0.015039 | 0.148 s | 0.015039 | +----------------------------+------------------+----------------+-----------------+---------------+ | AMT_CREDIT | 7.10 s | 0.053593 | 0.634 s | 0.059311 | +----------------------------+------------------+----------------+-----------------+---------------+ | ORGANIZATION_TYPE (C) | 6.31 s | 0.063098 | 0.274 s | 0.071520 | +----------------------------+------------------+----------------+-----------------+---------------+ | AMT_ANNUITY | 6.51 s | 0.024295 | 0.648 s | 0.031179 | +----------------------------+------------------+----------------+-----------------+---------------+ | AMT_GOODS_PRICE | 6.95 s | 0.056923 | 0.401 s | 0.092032 | +----------------------------+------------------+----------------+-----------------+---------------+ | NAME_HOUSING_TYPE (C) | 3.57 s | 0.015055 | 0.140 s | 0.015055 | +----------------------------+------------------+----------------+-----------------+---------------+ | REGION_POPULATION_RELATIVE | 4.33 s | 0.026578 | 0.392 s | 0.035567 | +----------------------------+------------------+----------------+-----------------+---------------+ | DAYS_BIRTH | 5.18 s | 0.081270 | 0.564 s | 0.086539 | +----------------------------+------------------+----------------+-----------------+---------------+ | OWN_CAR_AGE | 4.85 s | 0.021429 | 0.055 s | 0.021890 | +----------------------------+------------------+----------------+-----------------+---------------+ | OCCUPATION_TYPE (C) | 4.24 s | 0.077606 | 0.201 s | 0.079540 | +----------------------------+------------------+----------------+-----------------+---------------+ | APARTMENTS_AVG | 5.61 s | 0.032247(*) | 0.184 s | 0.032415 | +----------------------------+------------------+----------------+-----------------+---------------+ | BASEMENTAREA_AVG | 5.14 s | 0.022320 | 0.119 s | 0.022639 | +----------------------------+------------------+----------------+-----------------+---------------+ | YEARS_BUILD_AVG | 4.49 s | 0.016033 | 0.055 s | 0.016932 | +----------------------------+------------------+----------------+-----------------+---------------+ | EXT_SOURCE_2 | 5.21 s | 0.298463 | 0.606 s | 0.321417 | +----------------------------+------------------+----------------+-----------------+---------------+ | EXT_SOURCE_3 | 5.08 s | 0.316352 | 0.303 s | 0.334975 | +----------------------------+------------------+----------------+-----------------+---------------+ | TOTAL | 84.47 s |1.130907 | 5.087 s | 1.247756 | +----------------------------+------------------+----------------+-----------------+---------------+

(C): categorical variable. (*): max p-value between consecutive bins > 0.05.

The binning of variables with monotonicity trend peak or valley can benefit from the option monotonic_trend="auto_heuristic" at the expense of finding a suboptimal solution for some cases. The following table compares the options monotonic_trend="auto" and monotonic_trend="auto_heuristic",

+----------------------------+----------------+----------------+----------------+----------------+ | Variable | auto_time | auto_IV | heuristic_time | heuristic_IV | +============================+================+================+================+================+ | AMT_INCOME_TOTAL | 0.363 s | 0.011705 | 0.322 s | 0.011705 | +----------------------------+----------------+----------------+----------------+----------------+ | AMT_CREDIT | 0.634 s | 0.059311 | 0.469 s | 0.058643 | +----------------------------+----------------+----------------+----------------+----------------+ | AMT_ANNUITY | 0.648 s | 0.031179 | 0.505 s | 0.031179 | +----------------------------+----------------+----------------+----------------+----------------+ | AMT_GOODS_PRICE | 0.401 s | 0.092032 | 0.299 s | 0.092032 | +----------------------------+----------------+----------------+----------------+----------------+ | REGION_POPULATION_RELATIVE | 0.392 s | 0.035567 | 0.244 s | 0.035567 | +----------------------------+----------------+----------------+----------------+----------------+ | TOTAL | 2.438 s | 0.229794 | 1.839 s | 0.229126 | +----------------------------+----------------+----------------+----------------+----------------+

Observe that CPU time is reduced by 25% losing less than 1% in IV. The differences in CPU time are more noticeable as the number of bins increases, see http://gnpalencia.org/optbinning/tutorials/tutorial_binary_large_scale.html.

Contributing

Found a bug? Want to contribute with a new feature, improve documentation, or add examples? We encourage you to create pull requests and/or open GitHub issues. Thanks! :octocat: :tada: :+1:

Who uses OptBinning?

We would like to list companies using OptBinning. Please send a PR with your company name and @githubhandle if you may.

Currently officially using OptBinning:

  1. Jeitto <https://www.jeitto.com.br> [@BrennerPablo <https://github.com/BrennerPablo> & @ds-mauri <https://github.com/ds-mauri> & @GabrielSGoncalves <https://github.com/GabrielSGoncalves>]
  2. Bilendo <https://www.bilendo.de> [@FlorianKappert <https://github.com/floriankappert> & @JakobBeyer <https://github.com/jakobbeyer>_]
  3. Aplazame <https://www.aplazame.com/>_
  4. Praelexis Credit <https://www.praelexis.com/praelexis-credit/>_
  5. ING <www.ing.com>_
  6. DBRS Morningstar <https://www.dbrsmorningstar.com/>_
  7. Loginom <https://loginom.ru/>_
  8. Risika <https://risika.com/>_
  9. Tamara <https://tamara.co/>_
  10. BBVA AI Factory <https://www.bbvaaifactory.com/>_
  11. N26 <https://n26.com/>_
  12. Home Credit International <https://www.homecredit.net/>_
  13. Farm Credit Canada <https://www.fcc-fac.ca/>_

Citation

If you use OptBinning in your research/work, please cite the paper using the following BibTeX::

@article{Navas-Palencia2020OptBinning, title = {Optimal binning: mathematical programming formulation}, author = {Guillermo Navas-Palencia}, year = {2020}, eprint = {2001.08025}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, volume = {abs/2001.08025}, url = {http://arxiv.org/abs/2001.08025}, }

@article{Navas-Palencia2021Counterfactual, title = {Optimal Counterfactual Explanations for Scorecard modelling}, author = {Guillermo Navas-Palencia}, year = {2021}, eprint = {2104.08619}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, volume = {abs/2104.08619}, url = {http://arxiv.org/abs/2104.08619}, }