hayashi-laboratory / deeplabcut-analysis

A script for analyzing the data of novel object recognition and Y-maze test generated by DeepLabCut
MIT License
7 stars 1 forks source link

A package for analyzing the data from DeepLabCut

how to use this script

For windows user

Activate .venv in command prompt

(.venv) C:Users\yourname\....\directory_you_want>  ./.venv/Scripts/activate

Clone this repository using git bash

git clone https://github.com/lycantrope/deeplabcut-analysis.git && cd deeplabcut-analysis

Install all necessary packages

python -m pip install .

For Linux/MacOs user

source ./.venv/bin/activate
git clone https://github.com/lycantrope/deeplabcut-analysis.git && cd deeplabcut-analysis
python -m pip install .   

Add a kernel to jupyter lab

pip install ipykernel
python -m ipykernel install --user --name=your_env_name

Add other kernel to current kernel (Both environment need ipykernel installed)

/path/to/kernel/env/bin/python -m ipykernel install --prefix=/path/to/jupyter/env --name 'python-my-env'



pyDLCbehavior package provides NovelObjectRecognitionAnalysis and YMazeAnalysis class objects, which can analyze the NOR test and Y-maze test.
These class objects have the result dataframe obtained from every experimental file, so the results can be summarized in Jupyter lab or Jupyter notebook using the following ipynb files.




novel_object_analysis.ipynb

Run this code in Jupyter.




YMaze_analysis.ipynb

Run this code in Jupyter.