cd lib/
git clone https://github.com/varunjampani/video_prop_networks.git
lib/include
and lib/src
folders) to the corresponding locations in the caffe
repository. In the ssn_superpixels/lib
directory:cp src/caffe/layers/* video_prop_networks/lib/caffe/src/caffe/layers/.
cp src/caffe/test/* video_prop_networks/lib/caffe/src/caffe/test/.
cp src/caffe/proto/caffe.proto video_prop_networks/lib/caffe/src/caffe/proto/caffe.proto
cp include/caffe/layers/* video_prop_networks/lib/caffe/include/caffe/layers/.
ssn_superpixels/lib
directory:cd video_prop_networks/lib/caffe/
mkdir build
cd build
cmake ..
make -j
cd ../../../..
Note: If you install Caffe in some other folder, update CAFFEDIR
in config.py
accordingly.
We use a cython script taken from 'scikit-image' for enforcing connectivity in superpixels. To compile this:
cd lib/cython/
python setup.py install --user
cd ../..
Download the BSDS dataset into data
folder:
cd data
sh get_bsds.sh
cd ..
get_models.sh
script in the models
folder:cd models
sh get_models.sh
cd ..
compute_spixel.py
to compute superpixels on BSDS dataset:python compute_spixels.py --datatype TEST --n_spixels 100 --num_steps 10 --caffemodel ./models/intermediate_bsds_model --result_dir ./bsds_100/
You can change the number of superpixels by changing the n_spixels
argument above, and you can update the datatype
to TRAIN
or VAL
to compute superpixels on the corresponding data splits.
compute_sgement.py
to compute superpixels on BSDS dataset:python compute_sgement.py --datatype TEST --n_spixels 100 --num_steps 10 --caffemodel ./models/intermediate_bsds_model --result_dir ./bsds_seg/