heal-research / pyoperon

Python bindings and scikit-learn interface for the Operon library for symbolic regression.
MIT License
42 stars 12 forks source link
genetic-programming machine-learning parallel python sklearn-compatible symbolic-regression

pyoperon

License Build-linux Build-macos Matrix chat

pyoperon is the python bindings library of Operon, a modern C++ framework for symbolic regression developed by Heal-Research at the University of Applied Sciences Upper Austria.

A scikit-learn regressor is also available:

from pyoperon.sklearn import SymbolicRegressor

The example folder contains sample code for using either the Python bindings directly or the pyoperon.sklearn module.

Installation

New releases are published on github and on PyPI.

Most of the time pip install pyoperon should be enough.

Building from source

Conda/Mamba

  1. Clone the repository

    git clone https://github.com/heal-research/pyoperon.git
    cd pyoperon
  2. Install and activate the environment (replace micromamba with your actual program)

    micromamba env create -f environment.yml
    micromamba activate pyoperon
  3. Install the dependencies

    export CC=${CONDA_PREFIX}/bin/clang
    export CXX=${CONDA_PREFIX}/bin/clang++
    ./script/dependencies.sh
  4. Install pyoperon

    pip install .

Nix

Use this environment created with poetry2nix

nix develop github:foolnotion/poetryenv --no-write-lock-file

This will install operon and dependencies. Modify the flake file if you need additional python libraries (see https://github.com/nix-community/poetry2nix#how-to-guides)

Contributing

See the CONTRIBUTING document.