Our code is based on Python3.5. There are a few dependencies to run the code in the following:
requirements.txt
To transform raw NTU RGB+D data into numpy array (memmap format ) by this command:
python ./feeder/ntu_gendata.py --data_path <path for raw skeleton dataset> --out_folder <path for new dataset>
To generate the bone information:
python ./feeder/ntu_gen_bone_data.py --data_path <path for raw skeleton dataset> --out_folder <path for new dataset>
To generate the core information:
python ./feeder/ntu_gen_core_data.py --data_path <path for raw skeleton dataset> --out_folder <path for new dataset>
Not supported now.
Before you start the training, you have to launch visdom server.
python -m visdom
To train the model, you should note that:
--dataset_dir
is the parents path for all the datasets, --num
the number of experiments trials (type: list).
python main.py --dataset_dir <parents path for all the datasets> --mode train --model_name AIF_CNN --dataset_name NTU-RGB-D-CV --num 01
To run a new trial with different parameters, you need to:
--num 03
, thus you will got an error../experiments/NTU-RGB-D-CV/AIF_CNN01/params.json
to the path of your new trial "./experiments/NTU-RGB-D-CV/AIF_CNN03/params.json"
and modify the information(data, bone or core) as you want.python main.py --dataset_dir <parents path for all the datasets> --mode test --load True --model_name AIF_CNN --dataset_name NTU-RGB-D-CV --num 01
You also can load a half trained model, and start training it from a specific checkpoint by the following command:
python main.py --dataset_dir <parents path for all the datasets> --mode load_train --load True --model_name AIF_CNN --dataset_name NTU-RGB-D-CV --num 01 --load_model <path for trained model>
python main.py --dataset_dir <parents path for all the datasets> --mode test --load True --model_name AIF_CNN --dataset_name NTU-RGB-D-CV --num 01
Combine the generated scores with:
python merge_for_cs.py/merge_for_cv.py
[1] Chao Li, Qiaoyong Zhong, Di Xie, Shiliang Pu. Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. IJCAI 2018. http://arxiv.org/pdf/1804.06055.pdf