This repository contains code implementing the paper, Full Resolution Residual Networks for Semantic Segmentation in Street Scenes (FRRN) in Tensorflow.
:warning: This is not an official implementation, and might have some glitch (,or a major defect).
gtFine_trainvaltest.zip
, leftImg8bit_trainvaltest.zip
) and unzip under the directory dataset
./datasets/cityspaces/gtFine
and ./datasets/cityspaces/leftImg8bit
.python cityscapesScripts/cityscapesscripts/preparation/createTrainIdLabelImgs.py
python main.py
main.py
.main()
at the second last line on the main.py
and uncomment the last line, eval()
.python main.py
.The training is done with nVidia Quadro M4000 GPU (8GB of V-RAM). I can fit 3 batches with Type A architecture. I ran this about 32 hours for about 55k iterations. Below is the learning statistics, and some results on training set.
Below is the validation set result. I could get mIOU of 0.570.
❯❯❯ python cityscapesScripts/cityscapesscripts/evaluation/evalPixelLevelSemanticLabeling.py
Evaluating 500 pairs of images...
Images Processed: 500
-------------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -------
| u | e | r | o | s | d | g | r | s | p | r | b | w | f | g | b | t | p | p | t | t | v | t | s | p | r | c | t | b | c | t | t | m | b | Prior |
-------------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -------
unlabeled | 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0004
ego vehicle | 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0490
rectification | 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0189
out of roi | 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.04 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.13 0.00 0.05 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0151
static | 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.39 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.00 0.07 0.08 0.00 0.01 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.0149
dynamic | 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.35 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.03 0.00 0.01 0.06 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.0042
ground | 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0178
road | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3293
sidewalk | 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.85 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0473
parking | 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0040
rail track | 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0006
building | 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1917
wall | 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.09 0.00 0.00 0.28 0.22 0.10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0064
fence | 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.27 0.01 0.47 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.06 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0072
guard rail | 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.21 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000
bridge | 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0003
pole | 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.01 0.00 0.00 0.00 0.63 0.00 0.00 0.01 0.09 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0129
polegroup | 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.21 0.00 0.22 0.00 0.00 0.00 0.23 0.00 0.00 0.01 0.03 0.01 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.0001
traffic light | 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.38 0.02 0.15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0017
traffic sign | 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.80 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0058
vegetation | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1515
terrain | 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.14 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0073
sky | 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0293
person | 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.83 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.0114
rider | 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.17 0.59 0.04 0.00 0.00 0.00 0.00 0.00 0.04 0.11 0.0019
car | 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0570
truck | 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.05 0.00 0.00 0.29 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.0026
bus | 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.07 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.24 0.21 0.31 0.00 0.00 0.03 0.00 0.00 0.0034
caravan | 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.19 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.0001
trailer | 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.45 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.0002
train | 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.03 0.02 0.23 0.00 0.00 0.31 0.00 0.00 0.0010
motorcycle | 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.05 0.26 0.00 0.00 0.00 0.00 0.00 0.36 0.17 0.0007
bicycle | 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.79 0.0062
-------------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -------
classes IoU nIoU
--------------------------------
road : 0.963 nan
sidewalk : 0.736 nan
building : 0.873 nan
wall : 0.209 nan
fence : 0.382 nan
pole : 0.515 nan
traffic light : 0.359 nan
traffic sign : 0.617 nan
vegetation : 0.898 nan
terrain : 0.527 nan
sky : 0.884 nan
person : 0.714 0.522
rider : 0.449 0.339
car : 0.896 0.805
truck : 0.349 0.194
bus : 0.289 0.197
train : 0.277 0.132
motorcycle : 0.239 0.155
bicycle : 0.658 0.507
--------------------------------
Score Average : 0.570 0.356
--------------------------------
categories IoU nIoU
--------------------------------
flat : 0.975 nan
nature : 0.900 nan
object : 0.560 nan
sky : 0.884 nan
construction : 0.875 nan
human : 0.739 0.563
vehicle : 0.891 0.788
--------------------------------
Score Average : 0.832 0.675
--------------------------------