hon9g / algorithms

TIL: to keep practice on algorithms
6 stars 1 forks source link

Python JS

INDEX

Language

Questions for choosing the right language for your coding interview

  1. Are you interviewing for a language-specific job?
  2. What is your best language?
  3. How easy is it to solve algorithmic problems in the language?
  4. Is the language easy to understand for people who don’t know it?
  5. Do they use that language at the company?
Resources: - [Choose the right language for your coding interview](https://www.byte-by-byte.com/choose-the-right-language-for-your-coding-interview/) - [Choosing a Programming Language for Interviews](http://blog.codingforinterviews.com/best-programming-language-jobs/) - [Programming Language Resources](https://github.com/jwasham/coding-interview-university/blob/master/programming-language-resources.md)

TimeComplexity

Expected time complexity to perform the operation on the data limit N within the time limit of 1 to 10 seconds is as follows.

Limit of Data Size Expected Time Complexity
N <= 1,000,000 O(N) or O( n *log(n))
N <= 10,000 O(N**2)
N <= 500 O(N**3)
resources: - [Harvard CS50 - with korean explanation](https://www.edwith.org/cs50/lecture/22863/) - [Harvard CS50 - Asymptotic Notation (video)](https://www.youtube.com/watch?v=iOq5kSKqeR4) - [Big O Notations (general quick tutorial) (video)](https://www.youtube.com/watch?v=V6mKVRU1evU) - [Big O Notation (and Omega and Theta) - best mathematical explanation (video)](https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) - Skiena: - [video](https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b) - [slides](http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf) - [A Gentle Introduction to Algorithm Complexity Analysis](http://discrete.gr/complexity/) - [Orders of Growth (video)](https://www.coursera.org/lecture/algorithmic-thinking-1/orders-of-growth-6PKkX) - [Asymptotics (video)](https://www.coursera.org/lecture/algorithmic-thinking-1/asymptotics-bXAtM) - [UC Berkeley Big O (video)](https://archive.org/details/ucberkeley_webcast_VIS4YDpuP98) - [UC Berkeley Big Omega (video)](https://archive.org/details/ucberkeley_webcast_ca3e7UVmeUc) - [Amortized Analysis (video)](https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN) - [Illustrating "Big O" (video)](https://www.coursera.org/lecture/algorithmic-thinking-1/illustrating-big-o-YVqzv) - TopCoder (includes recurrence relations and master theorem): - [Computational Complexity: Section 1](https://www.topcoder.com/community/competitive-programming/tutorials/computational-complexity-section-1/) - [Computational Complexity: Section 2](https://www.topcoder.com/community/competitive-programming/tutorials/computational-complexity-section-2/) - [Cheat sheet](https://github.com/minh364/algorithms/issues/1)

Time complexity of Python built-in Functions

list

operation example time complexity
index list[i] O(1)
store list[i] = 0 O(1)
store list[i] = 1 O(1)
get length len(list) O(1)
append list.append(x) O(1)
slice list[a:b] O(k)
extend list.extend(iterable) L += K L = L + K O(k)
pop last one list.pop() O(1)
pop not last one list.pop(i) O(n)
remove list.remove(i) O(n)
construction list(iterable) O(n)
multiply list*k O(n)
copy list.copy() O(n)
comparision list1==list2 list1!=list2 O(n)
search x in list x not in list O(n)
extreme value min(list) max(list) O(n)
reverse list.reverse() O(n)
quick sort list.sort() sorted(list) O(n*log n)
sum sum(list) O(n)

append vs insert vs extend more

collections.deque

operation example time complexity
copy copy.copy(deque) O(n)
append .append(x) O(1)
append left .appendleft(x) O(1)
pop .pop() O(1)
pop left .popleft() O(1)
extend .extend(iterable) O(k)
extend extendleft(iterable) O(k)
rotate .rotate(n) O(k)
remove .remove(x) O(n)

set

operation example time complexity
Length len(s) O(1)
Add s.add(x) O(1)
Containment x in/not in s O(1)
Remove s.remove(..) O(1)
Discard s.discard(..) O(1)
Pop s.pop() O(1)
Clear s.clear() O(1)
check s != t s == t s <= t O(len(s))
check s >= t O(len(t))
Union s ∣ t O(len(s)+len(t))
Intersection s & t O(len(s)+len(t))
Difference s - t O(len(s)+len(t))
Symmetric Diff s ^ t O(len(s)+len(t))
Copy s.copy() O(N)

Dictionary

operation example time complexity
Index d[k] O(1)
Store d[k] = v O(1)
Length len(d) O(1)
Delete del d[k] O(1)
get/setdefault d.get(k) O(1)
Pop d.pop(k) O(1)
Pop item d.popitem() O(1)
Clear d.clear() O(1)
View d.keys() O(1)

more: python wiki-Time complexity , UCI- Complexity of Python Operations

Sorting

Quick Sort

time complexity space complexity
average O(N log N)
worst O(N^2) O(log N)
# space complexity in worst case: O(N)
def quickSort(self, nums: List[int]) -> List[int]:
    if len(nums) < 2: return nums
    pivot = nums[-1]
    lower = [ x for x in nums if x < pivot ]
    same = [ x for x in nums if x == pivot ]
    higher = [ x for x in nums if x > pivot ]
    return self.quickSort(lower)+ same + self.quickSort(higher)
const quickSort = (nums) => {
    if (nums.length < 2) {
        return nums
    }
    const pivot = nums[0]
    const less = nums.filter(x => x < pivot)
    const greater = nums.filter(x => x > pivot)
    const same = nums.filter(x => x === pivot)
    return [...quickSort(less), ...same, ...quickSort(greater)]
}

Merge Sort

time complexity space complexity
average O(N log N)
worst O(N log N) O(N)
def mergeSort(self, nums: List[int]) -> List[int]:
    if len(nums) < 2: return nums
    mid = len(nums) // 2
    a, b = self.mergeSort(nums[:mid]), self.mergeSort(nums[mid:])
    i, j, res = 0, 0, []
    while i < len(a) and j < len(b):
        if a[i] < b[j]:
            res.append(a[i])
            i += 1
        else:
            res.append(b[j])
            j += 1
    res = res + a[i:] if i < len(a) else res
    res = res + b[j:] if j < len(b) else res
    return res
const mergeSort = (nums) => {
    if (nums.length < 2) {
        return nums
    }
    const mid = Math.floor(nums.length/2)
    const [a, b] = [mergeSort(nums.slice(0, mid)), mergeSort(nums.slice(mid))]
    const sortedNums = []
    let i = 0, j = 0
    while (i < a.length && j < b.length) {
        sortedNums.push(a[i] < b[j] ? a[i++] : b[j++])
    }
    while (i < a.length) {
        sortedNums.push(a[i++])
    }
    while (j < b.length) {
        sortedNums.push(b[j++])
    }
    return sortedNums
}

Bubble Sort

time complexity space complexity
O(N^2) O(1)
def bubbleSort(self, nums: List[int]) -> List[int]:
        N = len(nums) - 1
        for i in range(N):
            for j in range(N - i):
                if nums[j] > nums[j + 1]:
                    nums[j + 1], nums[j] = nums[j], nums[j + 1]
        return nums

Insertion Sort

time complexity space complexity
O(N^2) O(1)
def insertionSort(self, nums: List[int]) -> List[int]:
    for i in range(1, len(nums)):
        curr = i
        for j in reversed(range(i)):
            if nums[j] <= nums[curr]:
                break
            nums[j], nums[curr] = nums[curr], nums[j]
            curr -= 1
    return nums

Selection Sort

time complexity space complexity
O(N^2) O(1)
def selectionSort(self, nums: List[int]) -> List[int]:
        for i in range(len(nums)):
            m = i
            for j in range(i + 1, len(nums)):
                if nums[j] < nums[m]:
                    m = j
            nums[m], nums[i] = nums[i], nums[m]
        return nums

Counting Sort

time complexity space complexity
O(A+K) O(K)
def countingSort(A: List[int],k: int) -> : List[int]:
    # A is consisted with integers range 0 to k
    n = len(A)
    # We need additional memory O(k)
    count = [0] * (k+1)
    for i in range(n):
        count[A[i]] += 1
    inx = 0
    for i in range(k+1):
        for j in range(count[i]): # smaller than O(A)
            A[inx] = i
            inx += 1
    return A