strfry is a relay for the nostr protocol
OK
until an event has been confirmed as committed to the DBIf you are using strfry, please join our telegram chat. Hopefully soon we'll migrate this to nostr.
A C++20 compiler is required, along with a few other common dependencies.
On Debian/Ubuntu use these commands:
sudo apt install -y git g++ make libssl-dev zlib1g-dev liblmdb-dev libflatbuffers-dev libsecp256k1-dev libzstd-dev
git clone https://github.com/hoytech/strfry && cd strfry/
git submodule update --init
make setup-golpe
make -j4
FreeBSD has slightly different commands (warning: possibly out of date):
pkg install -y gcc gmake cmake git perl5 openssl lmdb flatbuffers libuv libinotify zstr secp256k1 zlib-ng
git clone https://github.com/hoytech/strfry && cd strfry/
git submodule update --init
gmake setup-golpe
gmake -j4
To upgrade strfry, do the following:
git pull
make update-submodules
make -j4
Here is how to run the relay:
./strfry relay
For dev/testing, the config file ./strfry.conf
is used by default. It stores data in the ./strfry-db/
directory.
By default, it listens on port 7777 and only accepts connections from localhost. In production, you'll probably want a systemd unit file and a reverse proxy such as nginx to support SSL and other features.
Because strfry uses a custom LMDB schema, there is no SQL interface for managing the DB. Instead, regular nostr filters (as described in NIP-01) can be used for basic tasks.
For example, strfry scan
can be used to select all events matching a particular nostr filter:
./strfry scan '{"kinds":[0,1]}'
Each matching event will be printed on its own line (in other words, in JSONL format).
The strfry delete
command can be used to delete events from the DB that match a specified nostr filter. For example, to delete all events from a particular pubkey, use the following command:
./strfry delete --filter '{"authors":["4c7a4fa1a6842266f3f8ca4f19516cf6aa8b5ff6063bc3ec5c995e61e5689c39"]}'
The strfry import
command reads line-delimited JSON (jsonl) from its standard input and imports events that validate into the DB in batches of 10,000 at a time:
cat my-nostr-dump.jsonl | ./strfry import
--no-verify
flag.The strfry export
command will print events from the DB to standard output in jsonl, ordered by their created_at
field (ascending).
Optionally, you can limit the time period exported with the --since
and --until
flags. Normally exports will be in ascending order by created_at
(oldest first). You can reverse this with --reverse
.
If you pass the --fried
argument to strfry export
, then the outputed JSON lines will include fried
elements. This is precomputed data that strfry can use to re-import these events more quickly. To take advantage of this, use the --fried
flag on import as well.
This can be especially useful for upgrading strfry to a new, incompatible database version. See the fried exports documentation for more details on the format.
This command opens a websocket connection to the specified relay and makes a nostr REQ
request with filter {"limit":0}
:
./strfry stream wss://relay.example.com
All events that are streamed back are inserted into the DB (after validation, checking for duplicates, etc). If the connection is closed for any reason, the command will try reconnecting every 5 seconds.
You can also run it in the opposite direction, which monitors your local DB for any new events and posts them to the specified relay:
./strfry stream wss://relay.example.com --dir up
Both of these operations can be concurrently multiplexed over the same websocket:
./strfry stream wss://relay.example.com --dir both
strfry stream
will compress messages with permessage-deflate in both directions, if supported by the remote relay. Sliding window compression is not supported for now.
If you want to open many concurrent streams, see the strfry router command for an easier and more efficient approach.
This command uses the negentropy protocol and performs a set reconcilliation between the local DB and the specified relay's remote DB.
That is a fancy way of saying that it figures out which events the remote relay has that it doesn't, and vice versa. Assuming that both sides have some events in common, it does this more efficiently than simply transferring the full set of events (or even just their ids). You can read about the algorithm used in our article on Range-Based Set Reconciliation.
In addition to the C++ implementation used by strfry, negentropy has also been implemented in Javascript, Rust, Go, and more.
Here is how to perform a "full DB" set reconcilliation against a remote server:
./strfry sync wss://relay.example.com
This will download all missing events from the remote relay and insert them into your DB. Similar to stream
, you can also sync in the up
or both
directions:
./strfry sync wss://relay.example.com --dir both
both
is especially efficient, because performing the set reconcilliation automatically determines the missing members on each side.
Instead of a "full DB" sync, you can also sync the result of a nostr filter (or multiple filters, use a JSON array of them):
./strfry sync wss://relay.example.com --filter '{"authors":["..."]}'
Warning: Syncing can consume a lot of memory and bandwidth if the DBs are highly divergent (for example if your local DB is empty and your filter matches many events).
By default strfry keeps a precomputed BTree to speed up full-DB syncs. You can also cache BTrees for arbitrary filters, see the syncing section for more details.
In the past, incompatible changes have been made to the DB format. If you try to use a strfry
binary with an incompatible DB version, an error will be thrown. Only the strfry export
command will work.
In order to upgrade the DB, you should export and then import again using fried exports:
./strfry export --fried > dbdump.jsonl
mv strfry-db/data.mdb data.mdb.bak
./strfry import --fried < dbdump.jsonl
After you have confirmed everything is working OK, the dbdump.jsonl
and data.mdb.bak
files can be deleted.
The strfry compact
command creates a raw dump of the LMDB file (after compaction) and stores in the specified file (use -
to print to stdout). It cannot be used for DB upgrade purposes. It can however be useful for reclaiming space caused by fragmentation, or for migrating a DB to a new server that is running the same version of strfry.
To reclaim space, it is recommended to actually stop strfry for a compaction:
## ... stop strfry ...
./strfry compact - > strfry-db/data.mdb.compacted
mv strfry-db/data.mdb.compacted strfry-db/data.mdb
## ... start strfry ...
For migration purposes, no restart is required to perform the compaction.
strfry can have multiple different running instances simultaneously listening on the same port because it uses the REUSE_PORT
linux socket option. One of the reasons you may want to do this is to restart the relay without impacting currently connected users. This allows you to upgrade the strfry binary, or perform major configuration changes (for the subset of config options that require a restart).
If you send a SIGUSR1
signal to a strfry process, it will initiate a "graceful shutdown". This means that it will no longer accept new websocket connections, and after its last existing websocket connection is closed, it will exit.
So, the typical flow for a zero downtime restart is:
Record the PID of the currently running strfry instance.
Start a new relay process using the same configuration as the currently running instance:
strfry relay
At this point, both instances will be accepting new connections.
Initiate the graceful shutdown:
kill -USR1 $OLD_PID
Now only the new strfry instance will be accepting connections. The old one will exit once all its connections have been closed.
When hosting a relay, you may not want to accept certain events. To avoid having to encode that logic into strfry itself, we have a plugin system. Any programming language can be used to build a plugin using a simple line-based JSON interface.
In addition to write-policy plugins, plugins can also be used inside strfry router to determine which events to stream up/down to other relays.
See the plugin documentation for details and examples.
If you are building a "mesh" topology of routers, or mirroring events to neighbour relays (up and/or down), you can use strfry stream to stream the events as the come in. However, when handling multiple streams, the efficiency and convenience of this can be improved with the strfry router
command.
strfry router
handles many streams in one process, supports pre-filtering events using nostr filters and/or plugins, and more. See the router documentation for more details.
The most original feature of strfry is a set reconcillation protocol based on negentropy. This is implemented over a nostr protocol extension that allows two parties to synchronise their sets of stored messages with minimal bandwidth overhead. Negentropy can be used by both clients and relays.
The results of arbitrary nostr filter expressions can be synced. Relays can maintain BTree data-structures for pre-configured filters, improving the efficiency of commonly synced queries (such as the full DB). Whenever two parties to the sync share common subsets of identical events, then there will be significant bandwidth savings compared to downloading the full set. In addition to syncing, negentropy can also be used to compute accurate event counts for a filter across multiple relays, without having to download the entire filter results from each relay.
The strfry negentropy
command can be used to manage the pre-configured queries to sync.
negentropy list
will list the current BTrees. Here we see we have one filter, {}
which matches the full DB:
$ strfry negentropy list
tree 1
filter: {}
size: 483057
fingerprint: 9faaf0be1c25c1b4ee7e65f18cf4b352
This filter will be useful for full-DB syncs, and for syncs that use only since
/until
.
To add a new filter, use negentropy add
. For example:
$ strfry negentropy add '{"kinds":[0]}'
created tree 2
to populate, run: strfry negentropy build 2
Note that the tree starts empty. To populate it, use the negentropy build
command with the newly created tree ID:
$ strfry negentropy build 2
$ strfry negentropy list
tree 1
filter: {}
size: 483057
fingerprint: 9faaf0be1c25c1b4ee7e65f18cf4b352
tree 2
filter: {"kinds":[0]}
size: 33245
fingerprint: 37c005e6a1ded72df4b9d4aa688689db
Now negentropy queries for kind 0 (optionally including since
/until
) can be performed efficiently and statelessly.
Although nostr events are compressed during transfer using websocket compression, they are stored uncompressed on disk by default. In order to attempt to reduce the size of the strfry DB, the strfry dict
command can be used to compress these events while still allowing them to be efficiently served via a relay. Only the raw event JSON itself is compressed: The indices needed for efficient retrieval are not. Since the indices are often quite large, the relative effectiveness of this compression depends on the type of nostr events stored.
strfry dict
uses zstd dictionaries to compress events. First you must build one or more dictionaries with strfry dict train
. You can provide this command a nostr filter and it will select just these events. You may want to use custom dictionaries for certain kinds of events, or segment based on some other criteria. If desired, dictionary training can happen entirely offline without interfering with relay operation.
After building dictionaries, selections of events can be compressed with strfry dict compress
(events also selected with nostr filters). These events will be compressed with the indicated dictionary, but will still be served by the relay. Use the compress command again to re-compress with a different dictionary, or use dict decompress
to return it to its uncompressed state.
strfry dict stats
can be used to print out stats for the various dictionaries, including size used by the dataset, compression ratios, etc.
strfry uses concepts from various proprietary systems I have worked on in the past but consists solely of independently-developed open source code.
The golpe application framework is used for basic services such as command-line arg parsing, logging, config files, etc.
strfry is built on the embedded LMDB database (using my fork of lmdbxx C++ interface). This means that records are accessed directly from the page cache. The read data-path requires no locking/system calls and it scales optimally with additional cores.
Database records are serialised either with Flatbuffers or a bespoke packed representation, both of which allow fast and zero-copy access to individual fields within the records. A RasgueaDB layer is used for maintaining indices and executing queries.
The query engine is quite a bit less flexible than a general-purpose SQL engine, however the types of queries that can be performed via the nostr protocol are fairly constrained, so we can ensure that almost all queries have good index support. All possible query plans are determined at compile-time, so there is no SQL generation/parsing overhead, or risk of SQL injection.
When an event is inserted, indexable data (id, pubkey, tags, kind, and created_at) is loaded into a packed representation. Signatures and non-indexed tags are removed, along with recommended relay fields, etc, to keep the record size minimal (and therefore improve cache usage). The full event's raw JSON is stored separately. The raw JSON is re-serialised to remove any unauthenticated fields from the event, and to canonicalise the JSON representation (alphabetic ordering of fields, standard character escaping, etc).
Various indices are created based on the indexed fields. Almost all indices are "clustered" with the event's created_at
timestamp, allowing efficient since
/until
scans. Many queries can be serviced by index-only scans, and don't need to load the packed representation at all.
One benefit of a custom query engine is that we have the flexibility to optimise it for real-time streaming use-cases more than we could a general-purpose DB. For example, a user on a slow connection should not unnecessarily tie up resources. Our query engine supports pausing a query and storing it (it takes up a few hundred to a few thousand bytes, depending on query complexity), and resuming it later when the client's socket buffer has drained. Additionally, we can pause long-running queries to satisfy new queries as quickly as possible. This is all done without any database thread pools. There are worker threads, but they only exist to take advantage of multiple CPUs, not to block on client I/O.
strfry starts multiple OS threads that communicate with each-other via two channels:
This means that no in-memory data-structures are accessed concurrently. This is sometimes called "shared nothing" architecture.
Each individual thread has an "inbox". Typically a thread will block waiting for a batch of messages to arrive in its inbox, process them, queue up new messages in the inboxes of other threads, and repeat.
This thread is responsible for accepting new websocket connections, routing incoming requests to the Ingesters, and replying with responses.
The Websocket thread is a single thread that multiplexes IO to/from multiple connections using the most scalable OS-level interface available (for example, epoll on Linux). It uses my fork of uWebSockets.
Since there is only one of these threads, it is critical for system latency that it perform as little CPU-intensive work as possible. No request parsing or JSON encoding/decoding is done on this thread, nor any DB operations.
The Websocket thread does however handle compression and TLS, if configured. In production it is recommended to terminate TLS before strfry, for example with nginx.
If supported by the client, compression can reduce bandwidth consumption and improve latency.
Compression can run in two modes, either "per-message" or "sliding-window". Per-message uses much less memory, but it cannot take advantage of cross-message redundancy. Sliding-window uses more memory for each client, but the compression is typically better since nostr messages often contain serial redundancy (subIds, repeated pubkeys and event IDs in subsequent messages, etc).
The CPU usage of compression is typically small enough to make it worth it. However, strfry also supports running multiple independent strfry instances on the same machine (using the same DB backing store). This can distribute the compression overhead over several threads, according to the kernel's REUSE_PORT
policy.
These threads perform the CPU-intensive work of processing incoming messages:
A particular connection's requests are always routed to the same ingester.
This thread is responsible for most DB writes:
It is important there is only 1 writer thread: Because LMDB has an exclusive-write lock, multiple writers would imply contention. Additionally, when multiple events queue up, there is work that can be amortised across the batch (and the fsync
). This serves as a natural counterbalance against high write volumes.
Incoming REQ
messages have two stages. The first stage is retrieving "old" data that already existed in the DB at the time of the request.
Servicing this stage is the job of the ReqWorker thread pool. Like Ingester, messages are consistently delivered to a thread according to connection ID. This is important so that (for example) CLOSE messages are matched with corresponding REQs.
When this stage is complete the next stage (monitoring) begins. When a ReqWorker thread completes the first stage for a subscription, the subscription is then sent to a ReqMonitor thread. ReqWorker is also responsible for forwarding unsubscribe (CLOSE
) and socket disconnection messages to ReqMonitor. This forwarding is necessary to avoid a race condition where a message closing a subscription would be delivered while that subscription is pending in the ReqMonitor thread's inbox.
In nostr, each REQ
message from a subscriber can contain multiple filters. We call this collection a FilterGroup
. If one or more of the filters in the group matches an event, that event should be sent to the subscriber.
A FilterGroup
is a vector of Filter
objects. When the Ingester receives a REQ
, the JSON filter items are compiled into Filter
s and the original JSON is discarded. Each filter item's specified fields are compiled into sorted lookup tables called filter sets.
In order to determine if an event matches against a Filter
, first the since
and until
fields are checked. Then, each field of the event for which a filter item was specified is looked up in the corresponding lookup table. Specifically, the upper-bound index is determined using a binary search (for example std::upper_bound
). This is the first element greater than the event's item. Then the preceding table item is checked for a match.
Since testing Filter
s against events is performed so frequently, it is a performance-critical operation and some optimisations have been applied. For example, each filter item in the lookup table is represented by a 4 byte data structure, one of which is the first byte of the field and the rest are offset/size lookups into a single memory allocation containing the remaining bytes. Under typical scenarios, this will greatly reduce the amount of memory that needs to be loaded to process a filter. Filters with 16 or fewer items can often be rejected with the load of a single cache line. Because filters aren't scanned linearly, the number of items in a filter (ie amount of pubkeys) doesn't have a significant impact on processing resources.
The DB querying engine used by ReqWorker is called DBScan
. This engine is designed to take advantage of indices that have been added to the database. The indices have been selected so that no filters require full table scans (over the created_at
index), except ones that only use since
/until
(or nothing).
Because events are stored in the same packed representation in memory and "in the database" (there isn't really any difference with LMDB), compiled filters can be applied to either.
When a user's REQ
is being processed for the initial "old" data, each Filter
in its FilterGroup
is analysed and the best index is determined according to a simple heuristic. For each filter item in the Filter
, the index is scanned backwards starting at the upper-bound of that filter item. Because all indices are composite keyed with created_at
, the scanner also jumps to the until
time when possible. Each event is compared against the compiled Filter
and, if it matches, sent to the Websocket thread to be sent to the subscriber. The scan completes when one of the following is true:
created_at
is before the since
filter fieldlimit
field of delivered events has been reachedOnce this completes, a scan begins for the next item in the filter field. Note that a filter only ever uses one index. If a filter specifies both ids
and authors
, only the ids
index will be scanned. The authors
filters will be applied when the whole filter is matched prior to sending.
An important property of DBScan
is that queries can be paused and resumed with minimal overhead. This allows us to ensure that long-running queries don't negatively affect the latency of short-running queries. When ReqWorker first receives a query, it creates a DBScan for it. The scan will be run with a "time budget" (for example 10 milliseconds). If this is exceeded, the query is put to the back of a queue and new queries are checked for. This means that new queries will always be processed before resuming any queries that have already run for 10ms.
The second stage of a REQ request is comparing newly-added events against the REQ's filters. If they match, the event should be sent to the subscriber.
ReqMonitor is not directly notified when new events have been written. This is important because new events can be added in a variety of ways. For instance, the strfry import
command, event syncing, and multiple independent strfry instances using the same DB (ie, REUSE_PORT
).
Instead, ReqMonitor watches for file change events using the OS's filesystem change monitoring API (inotify on Linux). When the file has changed, it scans all the events that were added to the DB since the last time it ran.
Note that because of this design decision, ephemeral events work differently than in other relay implementations. They are stored to the DB, however they have a very short retention-policy lifetime and will be deleted after 5 minutes (by default).
Even though filter scanning is quite fast, strfry further attempts to optimise the case where a large number of concurrent REQs need to be monitored.
When ReqMonitor first receives a subscription, it first compares its filter group against all the events that have been written since the subscription's DBScan started (since those are omitted from DBScan).
After the subscription is all caught up to the current transaction's snapshot, the filter group is broken up into its individual filters, and then each filter has one field selected (because all fields in a query must have a match, it is sufficient to choose one). This field is broken up into its individual filter items (ie a list of ids
) and these are added to a sorted data-structure called a monitor set.
Whenever a new event is processed, all of its fields are looked up in the various monitor sets, which provides a list of filters that should be fully processed to check for a match. If an event has no fields in common with a filter, a match will not be attempted for this filter.
For example, for each item in the authors
field in a filter, an entry is added to the allAuthors
monitor set. When a new event is subsequently detected, the pubkey
is looked up in allAuthors
according to a binary search. Then the data-structure is scanned until it stops seeing records that match the pubkey
. All of these matching records are pointers to corresponding Filter
s of the REQs that have subscribed to this author. The filters must then be processed to determine if the event satisfies the other parameters of each filter (since
/until
/etc).
After comparing the event against each filter detected via the inverted index, that filter is marked as "up-to-date" with this event's ID, whether the filter matched or not. This prevents needlessly re-comparing this filter against the same event in the future (in case one of the other index lookups matches it). If a filter does match, then the entire filter group is marked as up-to-date. This prevents sending the same event multiple times in case multiple filters in a filter group match, and also prevents needlessly comparing other filters in the group against an event that has already been sent.
After an event has been processed, all the matching connections and subscription IDs are sent to the Websocket thread along with a single copy of the event's JSON. This prevents intermediate memory bloat that would occur if a copy was created for each subscription.
These threads implements the provider-side of the negentropy syncing protocol.
When NEG-OPEN requests are received, these threads perform DB queries in the same way as ReqWorker threads do. However, instead of sending the results back to the client, the IDs of the matching events are kept in memory, so they can be queried with future NEG-MSG
queries. Alternatively, if the query can be serviced with a pre-computed negentropy BTree, this is used instead and the query becomes stateless.
This thread is responsible for periodic maintenance operations. Currently this consists of applying a retention-policy and deleting ephemeral events.
How to run the tests is described in the test/README.md
file.
The query engine is the most complicated part of the relay, so there is a differential fuzzing test framework to exercise it.
To bootstrap the tests, we load in a set of real-world nostr events.
There is a simple but inefficient filter implementation in test/dumbFilter.pl
that can be used to check if an event matches a filter. In a loop, we randomly generate a complicated filter group and pipe the entire DB's worth of events through the dumb filter and record which events it matched. Next, we perform the query using strfry's query engine (using a strfry scan
) and ensure it matches. This gives us confidence that querying for "old" records in the DB will be performed correctly.
Next, we need to verify that monitoring for "new" records will function also. For this, in a loop we create a set of hundreds of random filters and install them in the monitoring engine. One of which is selected as a sample. The entire DB's worth of events is "posted to the relay" (actually just iterated over in the DB using strfry monitor
), and we record which events were matched. This is then compared against a full-DB scan using the same query.
Both of these tests have run for several hours with no observed failures.
strfry © 2023-2024 Doug Hoyte.
GPLv3 license. See the LICENSE file.