Tensorflow implementation of Semantic Instance Segmentation with a Discriminative Loss Function trained on the TuSimple dataset
├── data here the data should be stored
│ └── tusimple_dataset_processing.py processes the TuSimple dataset
├── doc documentation
├── inference_test inference related data
│ └── images for testing the inference
├── trained_model pretrained model for finetuning
├── clustering.py mean-shift clustering
├── datagenerator.py feeds data for training and evaluation
├── enet.py Enet architecture
├── inference.py tests inference on images
├── loss.py defines discriminative loss function
├── README.md
├── training.py contains training pipeline
├── utils.py contains utilities files for building and initializing the graph
└── visualization.py contains visualization of the clustering and pixel embeddings
python inference.py --modeldir trained_model --outdir inference_test/results
data
folder. The folder structure should look like this:python data/tusimple_dataset_processing.py <train_data_dir>
python training.py
python training --srcdir data --modeldir pretrained_semantic_model --outdir saved_model --logdir log --epochs 50 --var 1.0 --dist 1.0 --reg 1.0 --dvar 0.5 --ddist 1.5
python inference.py --modeldir saved_model
Feature space projection of one image for consecutive gradient steps. Each point represents one pixel embedding and each color represents an instance in the label.
Tensorflow version 1.2
This application uses Open Source components. We acknowledge and are grateful to these developers for their contributions to open source: