hrbrmstr / docxtractr

:scissors: Extract Tables from Microsoft Word Documents with R
Other
174 stars 29 forks source link
docx extract-tables microsoft-word r rstats table-extraction

Travis-CI Build
Status AppVeyor Build
Status Coverage
Status CRAN\_Status\_Badge

docxtractr

Extract Data Tables and Comments from ‘Microsoft’ ‘Word’ Documents

Description

An R package for extracting tables & comments out of Word documents (docx). Development versions are available here and production versions are on CRAN.

Microsoft Word docx files provide an XML structure that is fairly straightforward to navigate, especially when it applies to Word tables. The docxtractr package provides tools to determine table count, table structure and extract tables from Microsoft Word docx documents.

Many tables in Word documents are in twisted formats where there may be labels or other oddities mixed in that make it difficult to work with the underlying data. docxtractr provides a function—assign_colnames—that makes it easy to identify a particular row in a scraped (or any, really) data.frame as the one containing column names and have it become the column names, removing it and (optionally) all of the rows before it (since that’s usually what needs to be done).

What’s in the tin?

The following functions are implemented:

The following data file are included:

Installation

# devtools::install_github("hrbrmstr/docxtractr")
# OR 
install.packages("docxtractr")

Usage

library(docxtractr)
library(tibble)
library(dplyr)

# current version
packageVersion("docxtractr")
#> [1] '0.6.0'
# one table
doc <- read_docx(system.file("examples/data.docx", package="docxtractr"))

docx_tbl_count(doc)
#> [1] 1

docx_describe_tbls(doc)
#> Word document [/Library/Frameworks/R.framework/Versions/3.5/Resources/library/docxtractr/examples/data.docx]
#> 
#> Table 1
#>   total cells: 16
#>   row count  : 4
#>   uniform    : likely!
#>   has header : likely! => possibly [This, Is, A, Column]

docx_extract_tbl(doc, 1)
#> # A tibble: 3 x 4
#>   This  Is      A     Column  
#>   <chr> <chr>   <chr> <chr>   
#> 1 1     Cat     3.4   Dog     
#> 2 3     Fish    100.3 Bird    
#> 3 5     Pelican -99   Kangaroo

docx_extract_tbl(doc)
#> # A tibble: 3 x 4
#>   This  Is      A     Column  
#>   <chr> <chr>   <chr> <chr>   
#> 1 1     Cat     3.4   Dog     
#> 2 3     Fish    100.3 Bird    
#> 3 5     Pelican -99   Kangaroo

docx_extract_tbl(doc, header=FALSE)
#> NOTE: header=FALSE but table has a marked header row in the Word document
#> # A tibble: 4 x 4
#>   V1    V2      V3    V4      
#>   <chr> <chr>   <chr> <chr>   
#> 1 This  Is      A     Column  
#> 2 1     Cat     3.4   Dog     
#> 3 3     Fish    100.3 Bird    
#> 4 5     Pelican -99   Kangaroo

# url 

budget <- read_docx("http://rud.is/dl/1.DOCX")

docx_tbl_count(budget)
#> [1] 2

docx_describe_tbls(budget)
#> Word document [http://rud.is/dl/1.DOCX]
#> 
#> Table 1
#>   total cells: 24
#>   row count  : 6
#>   uniform    : likely!
#>   has header : unlikely
#> 
#> Table 2
#>   total cells: 28
#>   row count  : 4
#>   uniform    : likely!
#>   has header : unlikely

docx_extract_tbl(budget, 1)
#> # A tibble: 5 x 4
#>   ``                                 `Short-term Portfolio` `Long-term Portfolio` `Total Portfolio Values`
#>   <chr>                              <chr>                  <chr>                 <chr>                   
#> 1 Portfolio Balance (Market Value) * $  123,651,911         $ 294,704,136         $ 418,356,047           
#> 2 Effective Yield                    0.16 %                 1.42 %                1.05 %                  
#> 3 Avg. Weighted Maturity             11 Days                2.4 Years             1.7 Years               
#> 4 Net Earnings                       $      18,470          $      350,554        $      369,024          
#> 5 Benchmark**                        0.02 %                 0.41 %                0.27 %

docx_extract_tbl(budget, 2) 
#> # A tibble: 3 x 7
#>   ``                   `Amount of Funds … Maturity  `Effective Yiel… `Interpolated Y… `Total Return  … `Total Return  …
#>   <chr>                <chr>              <chr>     <chr>            <chr>            <chr>            <chr>           
#> 1 Short-Term Portfolio $ 123,651,911      11 days   0.16 %           0.01 %           0.013            0.160           
#> 2 Long-Term Portfolio  $ 294,704,136      2.4 years 1.42 %           0.41 %           0.437            0.250           
#> 3 Total Portfolio      $ 418,356,047      1.7 years 1.05 %           0.27 %           0.298            0.222

# three tables
doc3 <- read_docx(system.file("examples/data3.docx", package="docxtractr"))

docx_tbl_count(doc3)
#> [1] 3

docx_describe_tbls(doc3)
#> Word document [/Library/Frameworks/R.framework/Versions/3.5/Resources/library/docxtractr/examples/data3.docx]
#> 
#> Table 1
#>   total cells: 16
#>   row count  : 4
#>   uniform    : likely!
#>   has header : likely! => possibly [This, Is, A, Column]
#> 
#> Table 2
#>   total cells: 12
#>   row count  : 4
#>   uniform    : likely!
#>   has header : likely! => possibly [Foo, Bar, Baz]
#> 
#> Table 3
#>   total cells: 14
#>   row count  : 7
#>   uniform    : likely!
#>   has header : likely! => possibly [Foo, Bar]

docx_extract_tbl(doc3, 3)
#> # A tibble: 6 x 2
#>   Foo   Bar  
#>   <chr> <chr>
#> 1 Aa    Bb   
#> 2 Dd    Ee   
#> 3 Gg    Hh   
#> 4 1     2    
#> 5 Zz    Jj   
#> 6 Tt    ii

# no tables
none <- read_docx(system.file("examples/none.docx", package="docxtractr"))

docx_tbl_count(none)
#> [1] 0

# wrapping in try since it will return an error
# use docx_tbl_count before trying to extract in scripts/production
try(docx_describe_tbls(none))
#> No tables in document
try(docx_extract_tbl(none, 2))

# 5 tables, with two in sketchy formats
complx <- read_docx(system.file("examples/complex.docx", package="docxtractr"))

docx_tbl_count(complx)
#> [1] 5

docx_describe_tbls(complx)
#> Word document [/Library/Frameworks/R.framework/Versions/3.5/Resources/library/docxtractr/examples/complex.docx]
#> 
#> Table 1
#>   total cells: 16
#>   row count  : 4
#>   uniform    : likely!
#>   has header : likely! => possibly [This, Is, A, Column]
#> 
#> Table 2
#>   total cells: 12
#>   row count  : 4
#>   uniform    : likely!
#>   has header : likely! => possibly [Foo, Bar, Baz]
#> 
#> Table 3
#>   total cells: 14
#>   row count  : 7
#>   uniform    : likely!
#>   has header : likely! => possibly [Foo, Bar]
#> 
#> Table 4
#>   total cells: 11
#>   row count  : 4
#>   uniform    : unlikely => found differing cell counts (3, 2) across some rows
#>   has header : likely! => possibly [Foo, Bar, Baz]
#> 
#> Table 5
#>   total cells: 21
#>   row count  : 7
#>   uniform    : likely!
#>   has header : unlikely

docx_extract_tbl(complx, 3, header=TRUE)
#> # A tibble: 6 x 2
#>   Foo   Bar  
#>   <chr> <chr>
#> 1 Aa    Bb   
#> 2 Dd    Ee   
#> 3 Gg    Hh   
#> 4 1     2    
#> 5 Zz    Jj   
#> 6 Tt    ii

docx_extract_tbl(complx, 4, header=TRUE)
#> # A tibble: 3 x 3
#>   Foo   Bar   Baz  
#>   <chr> <chr> <chr>
#> 1 Aa    BbCc  <NA> 
#> 2 Dd    Ee    Ff   
#> 3 Gg    Hh    ii

docx_extract_tbl(complx, 5, header=TRUE)
#> # A tibble: 6 x 3
#>   Foo   Bar   Baz  
#>   <chr> <chr> <chr>
#> 1 Aa    Bb    Cc   
#> 2 Dd    Ee    Ff   
#> 3 Gg    Hh    Ii   
#> 4 Jj88  Kk    Ll   
#> 5 ""    Uu    Ii   
#> 6 Hh    Ii    h

# a "real" Word doc
real_world <- read_docx(system.file("examples/realworld.docx", package="docxtractr"))

docx_tbl_count(real_world)
#> [1] 8

# get all the tables
tbls <- docx_extract_all_tbls(real_world)

# see table 1
tbls[[1]]
#> # A tibble: 9 x 9
#>   V1                V2        V3         V4                     V5                     V6        V7      V8     V9     
#>   <chr>             <chr>     <chr>      <chr>                  <chr>                  <chr>     <chr>   <chr>  <chr>  
#> 1 Lesson 1:  Step 1 <NA>      <NA>       <NA>                   <NA>                   <NA>      <NA>    <NA>   <NA>   
#> 2 Country           Birthrate Death Rate Population Growth 2005 Population Growth 2050 Relative… Social… Socia… Social…
#> 3 USA               2.06      0.51%      0.92%                  -0.06%                 Post- In… Female… Stabl… Good t…
#> 4 China             1.62      0.3%       0.6%                   -0.58%                 Post- In… Govern… Techn… Urbani…
#> 5 Egypt             2.83      0.41%      2.0%                   1.32%                  Mature I… Not ye… More … Slight…
#> 6 India             2.35      0.34%      1.56%                  0.76%                  Post Ind… Econom… Pover… Becomi…
#> 7 Italy             1.28      0.72%      0.35%                  -1.33%                 Late Pos… Stable… Peopl… Better…
#> 8 Mexico            2.43      0.25%      1.41%                  0.96%                  Mature I… Better… Emigr… Econom…
#> 9 Nigeria           4.78      0.26%      2.46%                  3.58%                  End of M… Disease Peopl… People…

# make table 1 better
assign_colnames(tbls[[1]], 2)
#> # A tibble: 7 x 9
#>   Country Birthrate `Death Rate` `Population Grow… `Population Grow… `Relative place… `Social Factors… `Social Factors…
#>   <chr>   <chr>     <chr>        <chr>             <chr>             <chr>            <chr>            <chr>           
#> 1 USA     2.06      0.51%        0.92%             -0.06%            Post- Industrial Female Independ… Stable Birth Ra…
#> 2 China   1.62      0.3%         0.6%              -0.58%            Post- Industrial Government inte… Technology      
#> 3 Egypt   2.83      0.41%        2.0%              1.32%             Mature Industri… Not yet industr… More children n…
#> 4 India   2.35      0.34%        1.56%             0.76%             Post Industrial  Economic growth  Poverty         
#> 5 Italy   1.28      0.72%        0.35%             -1.33%            Late Post indus… Stable birth ra… People marry la…
#> 6 Mexico  2.43      0.25%        1.41%             0.96%             Mature Industri… Better health c… Emigration      
#> 7 Nigeria 4.78      0.26%        2.46%             3.58%             End of Mechaniz… Disease          People marry ea…
#> # ... with 1 more variable: `Social Factors 3` <chr>

# make table 1's column names great again 
mcga(assign_colnames(tbls[[1]], 2))
#> # A tibble: 7 x 9
#>   country birthrate death_rate population_growt… population_growt… relative_place_in… social_factors_1 social_factors_2
#>   <chr>   <chr>     <chr>      <chr>             <chr>             <chr>              <chr>            <chr>           
#> 1 USA     2.06      0.51%      0.92%             -0.06%            Post- Industrial   Female Independ… Stable Birth Ra…
#> 2 China   1.62      0.3%       0.6%              -0.58%            Post- Industrial   Government inte… Technology      
#> 3 Egypt   2.83      0.41%      2.0%              1.32%             Mature Industrial  Not yet industr… More children n…
#> 4 India   2.35      0.34%      1.56%             0.76%             Post Industrial    Economic growth  Poverty         
#> 5 Italy   1.28      0.72%      0.35%             -1.33%            Late Post industr… Stable birth ra… People marry la…
#> 6 Mexico  2.43      0.25%      1.41%             0.96%             Mature Industrial  Better health c… Emigration      
#> 7 Nigeria 4.78      0.26%      2.46%             3.58%             End of Mechanizat… Disease          People marry ea…
#> # ... with 1 more variable: social_factors_3 <chr>

# see table 5
tbls[[5]]
#> # A tibble: 5 x 6
#>   V1                V2      V3            V4        V5        V6      
#>   <chr>             <chr>   <chr>         <chr>     <chr>     <chr>   
#> 1 Lesson 2:  Step 1 <NA>    <NA>          <NA>      <NA>      <NA>    
#> 2 Nigeria           Default Prediction    + 5 years +15 years -5 years
#> 3 Birth rate        4.78    Goes Down     4.76      4.72      4.79    
#> 4 Death rate        0.36%   Stay the Same 0.42%     0.52%     0.3%    
#> 5 Population growth 3.58%   Goes Down     3.02%     2.32%     4.38%

# make table 5 better
assign_colnames(tbls[[5]], 2)
#> # A tibble: 3 x 6
#>   Nigeria           Default Prediction    `+ 5 years` `+15 years` `-5 years`
#>   <chr>             <chr>   <chr>         <chr>       <chr>       <chr>     
#> 1 Birth rate        4.78    Goes Down     4.76        4.72        4.79      
#> 2 Death rate        0.36%   Stay the Same 0.42%       0.52%       0.3%      
#> 3 Population growth 3.58%   Goes Down     3.02%       2.32%       4.38%

# preserve lines
intracell_whitespace <- read_docx(system.file("examples/preserve.docx", package="docxtractr"))
docx_extract_all_tbls(intracell_whitespace, preserve=TRUE)
#> [[1]]
#> # A tibble: 6 x 2
#>   `Test1:` Apple                                  
#>   <chr>    <chr>                                  
#> 1 Test2:   Banana                                 
#> 2 Test3:   "Cranberry\nDark"                      
#> 3 Test4:   "Elephant, Farm\nGrandpa"              
#> 4 Test5:   "Hat\nIgloo\nJackrabbit"               
#> 5 Test6:   " \nQuestion1\n[ ] Underwear\n[ ] VM\n"
#> 6 Test7:   Warm                                   
#> 
#> [[2]]
#> # A tibble: 2 x 4
#>   ``    Kite  Lemur      Madagascar
#>   <chr> <chr> <chr>      <chr>     
#> 1 Nanny Open  Port       Quarter   
#> 2 Rain  Sand  Television Unicorn   
#> 
#> [[3]]
#> # A tibble: 2 x 2
#>   `Test8:` `Xylophone\nYew`             
#>   <chr>    <chr>                        
#> 1 Test9:   Zebra                        
#> 2 Test10:  "Apple2\nBanana2\nCranberry2"

docx_extract_all_tbls(intracell_whitespace)
#> [[1]]
#> # A tibble: 6 x 2
#>   `Test1:` Apple                                                                                        
#>   <chr>    <chr>                                                                                        
#> 1 Test2:   Banana                                                                                       
#> 2 Test3:   CranberryDark                                                                                
#> 3 Test4:   Elephant, FarmGrandpa                                                                        
#> 4 Test5:   HatIglooJackrabbit                                                                           
#> 5 Test6:   KiteLemurMadagascarNannyOpenPortQuarterRainSandTelevisionUnicorn Question1[ ] Underwear[ ] VM
#> 6 Test7:   Warm                                                                                         
#> 
#> [[2]]
#> # A tibble: 2 x 4
#>   ``    Kite  Lemur      Madagascar
#>   <chr> <chr> <chr>      <chr>     
#> 1 Nanny Open  Port       Quarter   
#> 2 Rain  Sand  Television Unicorn   
#> 
#> [[3]]
#> # A tibble: 2 x 2
#>   `Test8:` XylophoneYew           
#>   <chr>    <chr>                  
#> 1 Test9:   Zebra                  
#> 2 Test10:  Apple2Banana2Cranberry2

# comments
cmnts <- read_docx(system.file("examples/comments.docx", package="docxtractr"))

print(cmnts)
#> No tables in document
#> Word document [/Library/Frameworks/R.framework/Versions/3.5/Resources/library/docxtractr/examples/comments.docx]
#> 
#> Found 3 comments.
#> # A tibble: 1 x 2
#>   author    `# Comments`
#>   <chr>            <int>
#> 1 boB Rudis            3

glimpse(docx_extract_all_cmnts(cmnts))
#> Observations: 3
#> Variables: 5
#> $ id           <chr> "0", "1", "2"
#> $ author       <chr> "boB Rudis", "boB Rudis", "boB Rudis"
#> $ date         <chr> "2016-07-01T21:09:00Z", "2016-07-01T21:09:00Z", "2016-07-01T21:09:00Z"
#> $ initials     <chr> "bR", "bR", "bR"
#> $ comment_text <chr> "This is the first comment", "This is the second comment", "This is a reply to the second comm...

Track Changes (depends on pandoc being available)

# original
read_docx(
  system.file("examples/trackchanges.docx", package="docxtractr")
) %>% 
  docx_extract_all_tbls(guess_header = FALSE)
#> NOTE: header=FALSE but table has a marked header row in the Word document
#> [[1]]
#> # A tibble: 1 x 1
#>   V1   
#>   <chr>
#> 1 21

# accept
read_docx(
  system.file("examples/trackchanges.docx", package="docxtractr"),
  track_changes = "accept"
) %>% 
  docx_extract_all_tbls(guess_header = FALSE)
#> [[1]]
#> # A tibble: 1 x 1
#>   V1   
#>   <chr>
#> 1 2

# reject
read_docx(
  system.file("examples/trackchanges.docx", package="docxtractr"),
  track_changes = "reject"
) %>% 
  docx_extract_all_tbls(guess_header = FALSE)
#> [[1]]
#> # A tibble: 1 x 1
#>   V1   
#>   <chr>
#> 1 1

Test Results

library(docxtractr)
library(testthat)
#> 
#> Attaching package: 'testthat'
#> The following object is masked from 'package:dplyr':
#> 
#>     matches

date()
#> [1] "Tue Oct 23 08:10:10 2018"

test_dir("tests/")
#> ✔ | OK F W S | Context
#> ══ testthat results  ═════════════════════════════════════════════════
#> OK: 16 SKIPPED: 0 FAILED: 0
#> 
#> ══ Results ═══════════════════════════════════════════════════════════
#> Duration: 0.2 s
#> 
#> OK:       0
#> Failed:   0
#> Warnings: 0
#> Skipped:  0

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.