huawei-noah / VanillaNet

MIT License
811 stars 56 forks source link

VanillaNet: the Power of Minimalism in Deep Learning

Official PyTorch implementation of VanillaNet, from the following paper:\ VanillaNet: the Power of Minimalism in Deep Learning \ Hanting chen, Yunhe Wang, Jianyuan Guo and Dacheng Tao

VanillaNet is an innovative neural network architecture that focuses on simplicity and efficiency. Moving away from complex features such as shortcuts and attention mechanisms, VanillaNet uses a reduced number of layers while still maintaining excellent performance. This project showcases that it's possible to achieve effective results with a lean architecture, thereby setting a new path in the field of computer vision and challenging the status quo of foundation models.

News

2023.06.02 In addition to the reported speed in the paper, we have also measured the speed with NVIDIA TensorRT on A100 and the speed on HUAWEI Ascend 910. The inference speed of VanillaNet is superior to other counterparts. 🍺

Comparison of Depth and Speed

VanillaNet achieves comparable performance to prevalent computer vision foundation models, yet boasts a reduced depth and enhanced inference speed:

name Params(M) FLOPs(B) Acc(%) Latency(ms)
Pytorch
A100
Latency(ms)
MindSpore
Ascend 910
Latency(ms)
TRT FP32
A100
Latency(ms)
TRT FP16
A100
Latency(ms)
TRT FP32
V100
Swin-T 28.3 4.5 81.18 10.51 2.24 1.41 0.98 4.71
ConvNextV2-N 15.6 2.45 81.2 6.85 3.43 - - 2.81
ResNet-18 11.7 1.8 70.6 3.12 0.60 0.41 0.28 1.63
ResNet-34 21.8 3.7 75.5 5.57 0.97 0.77 0.49 2.18
ResNet-50 25.6 4.1 79.8 7.64 1.23 0.80 0.54 3.03
ResNet-101 45.0 8.0 81.3 15.35 2.34 1.58 1.04 4.46
ResNet-152 60.2 11.5 81.8 22.19 3.40 2.30 1.49 6.89
VanillaNet-5 15.5 5.2 72.49 1.61 0.39 0.33 0.27 1.60
VanillaNet-6 32.5 6.0 76.36 2.01 0.53 0.40 0.33 1.84
VanillaNet-7 32.8 6.9 77.98 2.27 0.76 0.47 0.39 2.02
VanillaNet-8 37.1 7.7 79.13 2.56 0.80 0.52 0.45 2.26
VanillaNet-9 41.4 8.6 79.87 2.91 0.86 0.58 0.49 2.55
VanillaNet-10 45.7 9.4 80.57 3.24 0.89 0.63 0.53 2.84
VanillaNet-11 50.0 10.3 81.08 3.59 0.95 0.69 0.58 3.14
VanillaNet-12 54.3 11.1 81.55 3.82 1.00 0.75 0.62 3.44
VanillaNet-13 58.6 11.9 82.05 4.26 1.05 0.82 0.67 3.69

Downstream Tasks

Please refer to this page.

VanillaNet achieves a higher Frames Per Second (FPS) in detection and segmentation tasks.

Catalog

Results and Pre-trained Models

ImageNet-1K trained models

name #params(M) FLOPs(B) Lacency(ms) Acc(%) model
VanillaNet-5 15.5 5.2 1.61 72.49 model
VanillaNet-6 32.5 6.0 2.01 76.36 model
VanillaNet-7 32.8 6.9 2.27 77.98 model
VanillaNet-8 37.1 7.7 2.56 79.13 model
VanillaNet-9 41.4 8.6 2.91 79.87 model
VanillaNet-10 45.7 9.4 3.24 80.57 model
VanillaNet-11 50.0 10.3 3.59 81.08 model
VanillaNet-12 54.3 11.1 3.82 81.55 model
VanillaNet-13 58.6 11.9 4.26 82.05 model
VanillaNet-13-1.5x 127.8 26.5 7.83 82.53 model
VanillaNet-13-1.5x† 127.8 48.9 9.72 83.11 model

Installation

The results are produced with torch==1.10.2+cu113 torchvision==0.11.3+cu113 timm==0.6.12. Other versions might also work.

Install Pytorch and, torchvision following official instructions.

Install required packages:

pip install timm==0.6.12
pip install cupy-cuda113
pip install torchprofile
pip install einops
pip install tensorboardX
pip install terminaltables

Dataset Preparation

Download the ImageNet-1K classification dataset and structure the data as follows:

/path/to/imagenet-1k/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg

Testing

We give an example evaluation command for VanillaNet-5:

without deploy:

python -m torch.distributed.launch --nproc_per_node=1 main.py --model vanillanet_5 --data_path /path/to/imagenet-1k/ --real_labels /path/to/imagenet_real_labels.json --finetune /path/to/vanillanet_5.pth --eval True --model_key model_ema --crop_pct 0.875

with deploy:

python -m torch.distributed.launch --nproc_per_node=1 main.py --model vanillanet_5 --data_path /path/to/imagenet-1k/ --real_labels /path/to/imagenet_real_labels.json --finetune /path/to/vanillanet_5.pth --eval True --model_key model_ema --crop_pct 0.875 --switch_to_deploy /path/to/vanillanet_5_deploy.pth

Training

You can use the following command to train VanillaNet-5 on a single machine with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model vanillanet_5 \
--data_path /path/to/imagenet-1k \
--batch_size 128 --update_freq 1  --epochs 300 --decay_epochs 100 \ 
--lr 3.5e-3 --weight_decay 0.35  --drop 0.05 \
--opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.1 --bce_loss \
--output_dir /path/to/save_results \
--model_ema true --model_ema_eval true --model_ema_decay 0.99996 \
--use_amp true 

To train other VanillaNet variants, --model need to be changed. Examples are given below.

VanillaNet-6 ``` python -m torch.distributed.launch --nproc_per_node=8 main.py \ --model vanillanet_6 \ --data_path /path/to/imagenet-1k \ --batch_size 128 --update_freq 1 --epochs 300 --decay_epochs 100 \ --lr 4.8e-3 --weight_decay 0.32 --drop 0.05 \ --layer_decay 0.8 --layer_decay_num_layers 4 \ --opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.15 --bce_loss \ --output_dir /path/to/save_results \ --model_ema true --model_ema_eval true --model_ema_decay 0.99996 \ --use_amp true ```
VanillaNet-7 ``` python -m torch.distributed.launch --nproc_per_node=8 main.py \ --model vanillanet_7 \ --data_path /path/to/imagenet-1k \ --batch_size 128 --update_freq 1 --epochs 300 --decay_epochs 100 \ --lr 4.7e-3 --weight_decay 0.35 --drop 0.05 \ --layer_decay 0.8 --layer_decay_num_layers 5 \ --opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.4 --bce_loss \ --output_dir /path/to/save_results \ --model_ema true --model_ema_eval true --model_ema_decay 0.99996 \ --use_amp true ```
VanillaNet-8 ``` python -m torch.distributed.launch --nproc_per_node=8 main.py \ --model vanillanet_8 \ --data_path /path/to/imagenet-1k \ --batch_size 128 --update_freq 1 --epochs 300 --decay_epochs 100 \ --lr 3.5e-3 --weight_decay 0.3 --drop 0.05 \ --opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.4 --bce_loss \ --output_dir /path/to/save_results \ --model_ema true --model_ema_eval true --model_ema_decay 0.99996 \ --use_amp true ```
VanillaNet-9 ``` python -m torch.distributed.launch --nproc_per_node=8 main.py \ --model vanillanet_9 \ --data_path /path/to/imagenet-1k \ --batch_size 128 --update_freq 1 --epochs 300 --decay_epochs 100 \ --lr 3.5e-3 --weight_decay 0.3 --drop 0.05 \ --opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.4 --bce_loss \ --output_dir /path/to/save_results \ --model_ema true --model_ema_eval true --model_ema_decay 0.99996 \ --use_amp true ```
VanillaNet-10 ``` python -m torch.distributed.launch --nproc_per_node=8 main.py \ --model vanillanet_10 \ --data_path /path/to/imagenet-1k \ --batch_size 128 --update_freq 1 --epochs 300 --decay_epochs 100 \ --lr 3.5e-3 --weight_decay 0.25 --drop 0.05 \ --opt lamb --aa rand-m7-mstd0.5-inc1 --mixup 0.4 --bce_loss \ --output_dir /path/to/save_results \ --model_ema true --model_ema_eval true --model_ema_decay 0.99996 \ --use_amp true ```

Acknowledgement

This repository is built using the timm library, DeiT, BEiT, RegVGG, and ConvNeXt repositories.

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Instruction pdf

A instruction pdf (Chinese version) can be found here

Citation

If our work is useful for your research, please consider citing:

@article{chen2023vanillanet,
  title={VanillaNet: the Power of Minimalism in Deep Learning},
  author={Chen, Hanting and Wang, Yunhe and Guo, Jianyuan and Tao, Dacheng},
  journal={arXiv preprint arXiv:2305.12972},
  year={2023}
}

Notice

This open source project is not an official Huawei product, Huawei is not expected to provide support for this project.