SeuratExtend
is an R package designed to provide an improved and easy-to-use toolkit for scRNA-seq analysis and visualization, built upon the Seurat object. While Seurat
is a widely-used tool in the R community that offers a foundational framework for scRNA-seq analysis, it has limitations when it comes to more advanced analysis and customized visualization. SeuratExtend
expands upon Seurat
by offering an array of enhanced visualization tools, an integrated functional and pathway analysis pipeline, seamless integration with popular Python tools, and a suite of utility functions for data manipulation and presentation. Designed to be user-friendly even for beginners, the package retains a level of professionalism that ensures rigorous analysis.
Key Features:
Install SeuratExtend
directly from GitHub:
if (!requireNamespace("remotes", quietly = TRUE)) {
install.packages("remotes")
}
remotes::install_github("huayc09/SeuratExtend")
Heatmap
DimPlot2
FeaturePlot3
FeaturePlot3.grid
VlnPlot2
ClusterDistrBar
WaterfallPlot
color_pro
color_iwh
ryb2rgb
save_colors
GeneSetAnalysisGO
GeneSetAnalysisReactome
GeneSetAnalysis
SearchDatabase
SearchPathways
RenameGO
RenameReactome
FilterGOTerms
FilterReactomeTerms
GSEAplot
scVelo.SeuratToAnndata
scVelo.Plot
Palantir.RunDM
Palantir.Pseudotime
Palantir.Magic
Cellrank.Compute
Cellrank.Plot
GeneTrendCurve.Palantir
GeneTrendHeatmap.Palantir
GeneTrendCurve.Slingshot
GeneTrendHeatmap.Slingshot
RunSlingshot
create_condaenv_seuratextend
Seu2Adata
Seu2Loom
adata.LoadLoom
adata.AddDR
adata.AddMetadata
adata.Save
adata.Load
ImportPyscenicLoom
HumanToMouseGenesymbol
MouseToHumanGenesymbol
EnsemblToGenesymbol
GenesymbolToEnsembl
UniprotToGenesymbol
CalcStats
feature_percent
RunBasicSeurat
This quick start-up guide provides an overview of the most frequently
used functions in single-cell RNA sequencing (scRNA-seq) analysis. After
running the standard Seurat pipeline (refer to this Seurat pbmc3k
tutorial), you
should have a Seurat object ready for further analysis. Below, we
illustrate the use of a subset of the pbmc dataset as an example to
demonstrate various functionalities of the SeuratExtend
package.
library(Seurat)
library(SeuratExtend)
# Visualizing cell clusters using DimPlot2
DimPlot2(pbmc)
To check the percentage of each cluster within different samples:
# Cluster distribution bar plot
ClusterDistrBar(pbmc$orig.ident, pbmc$cluster)
To examine the marker genes of each cluster and visualize them using a heatmap:
# Calculating z-scores for variable features
genes.zscore <- CalcStats(
pbmc,
features = VariableFeatures(pbmc),
group.by = "cluster",
order = "p",
n = 4)
# Displaying heatmap
Heatmap(genes.zscore, lab_fill = "zscore")
For visualizing specific markers via a violin plot that incorporates box plots, median lines, and performs statistical testing:
# Specifying genes and cells of interest
genes <- c("CD3D", "CD14", "CD79A")
cells <- WhichCells(pbmc, idents = c("B cell", "CD8 T cell", "Mono CD14"))
# Violin plot with statistical analysis
VlnPlot2(
pbmc,
features = genes,
group.by = "cluster",
cells = cells,
stat.method = "wilcox.test")
Displaying three markers on a single UMAP, using RYB coloring for each marker:
FeaturePlot3(pbmc, feature.1 = "CD3D", feature.2 = "CD14", feature.3 = "CD79A")
Examining all the pathways of the immune process in the Gene Ontology (GO) database, and visualizing by a heatmap that displays the top pathways of each cluster across multiple cell types:
options(spe = "human")
pbmc <- GeneSetAnalysisGO(pbmc, parent = "immune_system_process", n.min = 5)
matr <- RenameGO(pbmc@misc$AUCell$GO$immune_system_process)
go_zscore <- CalcStats(
matr,
f = pbmc$cluster,
order = "p",
n = 3)
Heatmap(go_zscore, lab_fill = "zscore")
Using a GSEA plot to focus on a specific pathway for deeper comparative analysis:
GSEAplot(
pbmc,
ident.1 = "B cell",
ident.2 = "CD8 T cell",
title = "GO:0042113 B cell activation (335g)",
geneset = GO_Data$human$GO2Gene[["GO:0042113"]])
After conducting Gene Regulatory Networks Analysis using pySCENIC, import the output and visualize various aspects within Seurat:
# Downloading a pre-computed SCENIC loom file
scenic_loom_path <- file.path(tempdir(), "pyscenic_integrated-output.loom")
download.file("https://zenodo.org/records/10944066/files/pbmc3k_small_pyscenic_integrated-output.loom", scenic_loom_path)
# Importing SCENIC Loom Files into Seurat
pbmc <- ImportPyscenicLoom(scenic_loom_path, seu = pbmc)
# Visualizing variables such as cluster, gene expression, and SCENIC regulon activity with customized colors
DimPlot2(
pbmc,
features = c("cluster", "orig.ident", "CEBPA", "tf_CEBPA"),
cols = list("tf_CEBPA" = "D"),
theme = NoAxes()
)
# Creating a waterfall plot to compare regulon activity between cell types
DefaultAssay(pbmc) <- "TF"
WaterfallPlot(
pbmc,
features = rownames(pbmc),
ident.1 = "Mono CD14",
ident.2 = "CD8 T cell",
exp.transform = FALSE,
top.n = 20)
Trajectory analysis helps identify developmental pathways and transitions between different cell states. In this section, we demonstrate how to perform trajectory analysis using the Palantir algorithm on a subset of myeloid cells, integrating everything within the R environment.
First, we download a small subset of myeloid cells to illustrate the analysis:
# Download the example Seurat Object with myeloid cells
mye_small <- readRDS(url("https://zenodo.org/records/10944066/files/pbmc10k_mye_small_velocyto.rds", "rb"))
Palantir uses diffusion maps for dimensionality reduction to infer trajectories. Here’s how to compute and visualize them:
# Compute diffusion map
mye_small <- Palantir.RunDM(mye_small)
# Visualize the first two diffusion map dimensions
DimPlot2(mye_small, reduction = "ms")
Pseudotime ordering assigns each cell a time point in a trajectory, indicating its progression along a developmental path:
# Calculate pseudotime with a specified start cell
mye_small <- Palantir.Pseudotime(mye_small, start_cell = "sample1_GAGAGGTAGCAGTACG-1")
# Store pseudotime results in meta.data for easy plotting
ps <- mye_small@misc$Palantir$Pseudotime
colnames(ps)[3:4] <- c("fate1", "fate2")
mye_small@meta.data[,colnames(ps)] <- ps
# Visualize pseudotime and cell fates
DimPlot2(
mye_small,
features = colnames(ps),
reduction = "ms",
cols = list(Entropy = "D"))
Visualizing gene expression or regulon activity along calculated trajectories can provide insights into dynamic changes:
# Create smoothed gene expression curves along trajectory
GeneTrendCurve.Palantir(
mye_small,
pseudotime.data = ps,
features = c("CD14", "FCGR3A")
)
# Create a gene trend heatmap for different fates
GeneTrendHeatmap.Palantir(
mye_small,
features = VariableFeatures(mye_small)[1:10],
pseudotime.data = ps,
lineage = "fate1"
)
scVelo is a Python tool used for RNA velocity analysis. We demonstrate how to integrate and analyze velocyto-generated data within the Seurat workflow using scVelo.
First, download the pre-calculated velocyto loom file:
# Download velocyto loom file
loom_path <- file.path(tempdir(), "pbmc10k_mye_small.loom")
download.file("https://zenodo.org/records/10944066/files/pbmc10k_mye_small.loom", loom_path)
# Path for saving the integrated AnnData object
adata_path <- file.path(tempdir(), "mye_small.h5ad")
# Integrate Seurat Object and velocyto loom into an AnnData object
scVelo.SeuratToAnndata(
mye_small,
filename = adata_path,
velocyto.loompath = loom_path,
prefix = "sample1_",
postfix = "-1"
)
Once the data is processed, visualize the RNA velocity:
# Plot RNA velocity
scVelo.Plot(color = "cluster", basis = "ms_cell_embeddings", figsize = c(5,4))
For detailed usage of the functions and more advanced analysis, please refer to the vignettes and tutorials.
GPL (>= 3)