huggingface / huggingface.js

Utilities to use the Hugging Face Hub API
https://hf.co/docs/huggingface.js
MIT License
1.42k stars 230 forks source link
api-client hub huggingface inference machine-learning


huggingface javascript library logo

```ts // Programatically interact with the Hub await createRepo({ repo: {type: "model", name: "my-user/nlp-model"}, accessToken: HF_TOKEN }); await uploadFile({ repo: "my-user/nlp-model", accessToken: HF_TOKEN, // Can work with native File in browsers file: { path: "pytorch_model.bin", content: new Blob(...) } }); // Use Inference API await inference.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [ { role: "user", content: "Hello, nice to meet you!", }, ], max_tokens: 512, temperature: 0.5, }); await inference.textToImage({ model: "black-forest-labs/FLUX.1-dev", inputs: "a picture of a green bird", }); // and much more… ``` # Hugging Face JS libraries This is a collection of JS libraries to interact with the Hugging Face API, with TS types included. - [@huggingface/inference](packages/inference/README.md): Use Inference Endpoints (dedicated) and Inference API (serverless) to make calls to 100,000+ Machine Learning models - [@huggingface/hub](packages/hub/README.md): Interact with huggingface.co to create or delete repos and commit / download files - [@huggingface/agents](packages/agents/README.md): Interact with HF models through a natural language interface - [@huggingface/gguf](packages/gguf/README.md): A GGUF parser that works on remotely hosted files. - [@huggingface/tasks](packages/tasks/README.md): The definition files and source-of-truth for the Hub's main primitives like pipeline tasks, model libraries, etc. - [@huggingface/space-header](packages/space-header/README.md): Use the Space `mini_header` outside Hugging Face We use modern features to avoid polyfills and dependencies, so the libraries will only work on modern browsers / Node.js >= 18 / Bun / Deno. The libraries are still very young, please help us by opening issues! ## Installation ### From NPM To install via NPM, you can download the libraries as needed: ```bash npm install @huggingface/inference npm install @huggingface/hub npm install @huggingface/agents ``` Then import the libraries in your code: ```ts import { HfInference } from "@huggingface/inference"; import { HfAgent } from "@huggingface/agents"; import { createRepo, commit, deleteRepo, listFiles } from "@huggingface/hub"; import type { RepoId } from "@huggingface/hub"; ``` ### From CDN or Static hosting You can run our packages with vanilla JS, without any bundler, by using a CDN or static hosting. Using [ES modules](https://hacks.mozilla.org/2018/03/es-modules-a-cartoon-deep-dive/), i.e. ` ``` ### Deno ```ts // esm.sh import { HfInference } from "https://esm.sh/@huggingface/inference" import { HfAgent } from "https://esm.sh/@huggingface/agents"; import { createRepo, commit, deleteRepo, listFiles } from "https://esm.sh/@huggingface/hub" // or npm: import { HfInference } from "npm:@huggingface/inference" import { HfAgent } from "npm:@huggingface/agents"; import { createRepo, commit, deleteRepo, listFiles } from "npm:@huggingface/hub" ``` ## Usage examples Get your HF access token in your [account settings](https://huggingface.co/settings/tokens). ### @huggingface/inference examples ```ts import { HfInference } from "@huggingface/inference"; const HF_TOKEN = "hf_..."; const inference = new HfInference(HF_TOKEN); // Chat completion API const out = await inference.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512 }); console.log(out.choices[0].message); // Streaming chat completion API for await (const chunk of inference.chatCompletionStream({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512 })) { console.log(chunk.choices[0].delta.content); } // You can also omit "model" to use the recommended model for the task await inference.translation({ inputs: "My name is Wolfgang and I live in Amsterdam", parameters: { src_lang: "en", tgt_lang: "fr", }, }); await inference.textToImage({ model: 'black-forest-labs/FLUX.1-dev', inputs: 'a picture of a green bird', }) await inference.imageToText({ data: await (await fetch('https://picsum.photos/300/300')).blob(), model: 'nlpconnect/vit-gpt2-image-captioning', }) // Using your own dedicated inference endpoint: https://hf.co/docs/inference-endpoints/ const gpt2 = inference.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2'); const { generated_text } = await gpt2.textGeneration({inputs: 'The answer to the universe is'}); //Chat Completion const llamaEndpoint = inference.endpoint( "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct" ); const out = await llamaEndpoint.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512, }); console.log(out.choices[0].message); ``` ### @huggingface/hub examples ```ts import { createRepo, uploadFile, deleteFiles } from "@huggingface/hub"; const HF_TOKEN = "hf_..."; await createRepo({ repo: "my-user/nlp-model", // or {type: "model", name: "my-user/nlp-test"}, accessToken: HF_TOKEN }); await uploadFile({ repo: "my-user/nlp-model", accessToken: HF_TOKEN, // Can work with native File in browsers file: { path: "pytorch_model.bin", content: new Blob(...) } }); await deleteFiles({ repo: {type: "space", name: "my-user/my-space"}, // or "spaces/my-user/my-space" accessToken: HF_TOKEN, paths: ["README.md", ".gitattributes"] }); ``` ### @huggingface/agents example ```ts import {HfAgent, LLMFromHub, defaultTools} from '@huggingface/agents'; const HF_TOKEN = "hf_..."; const agent = new HfAgent( HF_TOKEN, LLMFromHub(HF_TOKEN), [...defaultTools] ); // you can generate the code, inspect it and then run it const code = await agent.generateCode("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud."); console.log(code); const messages = await agent.evaluateCode(code) console.log(messages); // contains the data // or you can run the code directly, however you can't check that the code is safe to execute this way, use at your own risk. const messages = await agent.run("Draw a picture of a cat wearing a top hat. Then caption the picture and read it out loud.") console.log(messages); ``` There are more features of course, check each library's README! ## Formatting & testing ```console sudo corepack enable pnpm install pnpm -r format:check pnpm -r lint:check pnpm -r test ``` ## Building ``` pnpm -r build ``` This will generate ESM and CJS javascript files in `packages/*/dist`, eg `packages/inference/dist/index.mjs`.