Our method achieved 4th place in PSNR and 3rd place in SSIM in the PBVS 2024 Thermal Image Super-Resolution Challenge(TISR)-Track1.
python setup.py develop
./datasets
Extract sub-images
python df2k_extract_subimages.py
Create a meta-info file
python df2k_generate_meta_info.py
Extract sub-images
python thermal_extract_subimages.py
Create a meta-info file
python thermal_generate_meta_info.py
./options/test
Create SR images
python hat/test.py -opt options/test/HAT_SRx8_quick.yml
The testing results will be saved in the ./results
folder.
./options/train
Pretraining command
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 hat/train.py -opt options/train/train_HAT_thermalSRx8_pre.yml --launcher pytorch
The training logs and weights will be saved in the ./experiments
folder.
./options/train
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=1234 hat/train.py -opt options/train/train_HAT_thermalSRx8_48_cutblur_fineturn.yml --launcher pytorch
The training logs and weights will be saved in the ./experiments
folder.
Our codes borrowed from chxy95 and nmhkahn. Thanks for their work.