hulianyuyy / CorrNet_Plus

CorrNet+: Sign Language Recognition and Translation via Spatial-Temporal Correlation
16 stars 3 forks source link

CorrNet+

This repo holds codes of the paper: CorrNet+: Sign Language Recognition and Translation via Spatial-Temporal Correlation [paper], which is an extension of our previous work (CVPR 2023) [paper]

For the code supporting continuous sign language recognition, refer to CorrNet_Plus_CSLR for the code.

We currently reserve the code of CorrNet_Plus_SLT.

Performance

Method PHOENIX2014 PHOENIX2014-T CSL-Daily
Dev(%) Test(%) Dev(%) Test(%) Dev(%) Test(%)
del/ins WER del/ins WER
CVT-SLR (CVPR2023) 6.4/2.6 19.8 6.1/2.3 20.1 19.4 20.3 - -
CoSign-2s (ICCV2023) - 19.7 - 20.1 19.5 20.1 - -
AdaSize (PR2024) 7.0/2.6 19.7 7.2/3.1 20.9 19.7 21.2 31.3 30.9
AdaBrowse+ (ACMMM2023) 6.0/2.5 19.6 5.9/2.6 20.7 19.5 20.6 31.2 30.7
SEN (AAAI2023) 5.8/2.6 19.5 7.3/4.0 21.0 19.3 20.7 31.1 30.7
CTCA (CVPR2023) 6.2/2.9 19.5 6.1/2.6 20.1 19.3 20.3 31.3 29.4
C2SLR (CVPR2022) - 20.5 - 20.4 20.2 20.4 - -
CorrNet+ 5.3/2.7 18.0 5.6/2.4 18.2 17.2 19.1 28.6 28.2
PHOENIX2014-T
Method Dev(%) Test(%)
Rouge BLEU1 BLEU2 BLEU3 BLEU4 Rouge BLEU1 BLEU2 BLEU3 BLEU4
SignBT (CVPR2021) 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
MMTLB (CVPR2022) 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
SLTUNET (ICLR2023) 52.23 - - - 27.87 52.11 52.92 41.76 33.99 28.47
TwoStream-SLT (NeuIPS2023) 54.08 54.32 41.99 34.15 28.66 53.48 54.90 42.43 34.46 28.95
CorrNet+ 54.54 54.56 42.31 34.48 29.13 53.76 55.32 42.74 34.86 29.42
CSL-Daily
Method Dev(%) Test(%)
Rouge BLEU1 BLEU2 BLEU3 BLEU4 Rouge BLEU1 BLEU2 BLEU3 BLEU4
SignBT (CVPR2021) 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
MMTLB (CVPR2022) 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
SLTUNET (ICLR2023) 53.58 - - - 23.99 54.08 54.98 41.44 31.84 25.01
TwoStream-SLT (NeuIPS2023) 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.59 32.87 25.79
CorrNet+ 55.52 55.64 42.78 33.13 26.14 55.84 55.82 42.96 33.26 26.14

Visualizations

As shown below, our method intelligently models the human body trajectories across adjacent frames and pays special attention to the moving human body parts.

The visualizations of spatial-temporal correlation maps

Data preparation, Environment, Training, Inference and Visualizations

For detailed instructions of data preparation, environment, training, inference and visualizations, please refer to each sub-repo for guidance.