hustvl / WeakTr

WeakTr: Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation
MIT License
123 stars 2 forks source link

WeakTr

Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation

[Lianghui Zhu](https://github.com/Unrealluver)1 \*, [Yingyue Li](https://github.com/Yingyue-L)1 \*, [Jiemin Fang](https://jaminfong.cn)1, Yan Liu2, Hao Xin2, [Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/)1, [Xinggang Wang](https://scholar.google.com/citations?user=qNCTLV0AAAAJ&hl=zh-CN)1 :email: 1 School of EIC, Huazhong University of Science & Technology, 2 Ant Group (\*) equal contribution, (:email:) corresponding author. ArXiv Preprint ([arXiv 2304.01184](https://arxiv.org/abs/2304.01184))

Highlight

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/weaktr-exploring-plain-vision-transformer-for/weakly-supervised-semantic-segmentation-on)](https://paperswithcode.com/sota/weakly-supervised-semantic-segmentation-on?p=weaktr-exploring-plain-vision-transformer-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/weaktr-exploring-plain-vision-transformer-for/weakly-supervised-semantic-segmentation-on-1)](https://paperswithcode.com/sota/weakly-supervised-semantic-segmentation-on-1?p=weaktr-exploring-plain-vision-transformer-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/weaktr-exploring-plain-vision-transformer-for/weakly-supervised-semantic-segmentation-on-14)](https://paperswithcode.com/sota/weakly-supervised-semantic-segmentation-on-14?p=weaktr-exploring-plain-vision-transformer-for) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/weaktr-exploring-plain-vision-transformer-for/weakly-supervised-semantic-segmentation-on-4)](https://paperswithcode.com/sota/weakly-supervised-semantic-segmentation-on-4?p=weaktr-exploring-plain-vision-transformer-for)

Introduction

This paper explores the properties of the plain Vision Transformer (ViT) for Weakly-supervised Semantic Segmentation (WSSS). The class activation map (CAM) is of critical importance for understanding a classification network and launching WSSS. We observe that different attention heads of ViT focus on different image areas. Thus a novel weight-based method is proposed to end-to-end estimate the importance of attention heads, while the self-attention maps are adaptively fused for high-quality CAM results that tend to have more complete objects.

Step1: End-to-End CAM Generation

Besides, we propose a ViT-based gradient clipping decoder for online retraining with the CAM results to complete the WSSS task. We name this plain Transformer-based Weakly-supervised learning framework WeakTr. It achieves the state-of-the-art WSSS performance on standard benchmarks, i.e., 78.5% mIoU on the val set of VOC12 and 51.1% mIoU on the val set of COCO14.

Step2: Online Retraining with Gradient Clipping Decoder

News

Getting Started

Main results

Step1: End-to-End CAM Generation

Dataset Method Backbone Checkpoint CAM_Label Train mIoU
VOC12 WeakTr DeiT-S Google Drive Google Drive 69.4%
COCO14 WeakTr DeiT-S Google Drive Google Drive 42.6%

Step2: Online Retraining with Gradient Clipping Decoder

Dataset Method Backbone Checkpoint Val mIoU Pseudo-mask Train mIoU
VOC12 WeakTr DeiT-S Google Drive 74.0% Google Drive 76.5%
VOC12 WeakTr DINOv2-S Google Drive 75.8% Google Drive 78.1%
VOC12 WeakTr ViT-S Google Drive 78.4% Google Drive 80.3%
VOC12 WeakTr EVA-02-S Google Drive 78.5% Google Drive 80.0%
COCO14 WeakTr DeiT-S Google Drive 46.9% Google Drive 48.9%
COCO14 WeakTr DINOv2-S Google Drive 48.9% Google Drive 50.7%
COCO14 WeakTr ViT-S Google Drive 50.3% Google Drive 51.3%
COCO14 WeakTr EVA-02-S Google Drive 51.1% Google Drive 52.2%

Citation

If you find this repository/work helpful in your research, welcome to cite the paper and give a ⭐.

@article{zhu2023weaktr,
      title={WeakTr: Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation}, 
      author={Lianghui Zhu and Yingyue Li and Jiemin Fang and Yan Liu and Hao Xin and Wenyu Liu and Xinggang Wang},
      year={2023},
      journal={arxiv:2304.01184},
}