I have used BERT Token Classification Model to extract keywords from a sentence. Feel free to clone and use it. If you face any problems, kindly post it on issues section.
Special credits to BERT authors: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, original repo and Huggingface for PyTorch version original repo.
You need:
pytorch 1.0
python 3.6
pytorch-pretrained-bert 0.4.0
The keyword-extractor.py
script can be used to extract keywords from a sentence and accepts the following arguments:
optional arguments:
-h, --help show this help message and exit
--sentence SEN sentence to extract keywords
--path LOAD path to load model from
Example:
python keyword-extractor.py --sentence "BERT is a great model." --path "model.pt"
You can also train it from scratch using BERT's pre-trained model. The main.py
script can be utilized for training and accepts the following arguments:
optional arguments:
-h, --help show this help message and exit
--data DATA location of the data corpus
--lr LR initial learning rate
--epochs EPOCHS upper epoch limit
--batch_size N batch size
--seq_len N sequence length
--save SAVE path to save the final model
Example:
python main.py --data "maui-semeval2010-train" --lr 2e-5 --batch_size 32 --save "model.pt" --epochs 3
This model has been trained on SemEval 2010 dataset (scientific publications). You can swap this with your own custom dataset.
I have provided the explanation of keyphrase extraction in the form of python notebook which you can view here
I ran ablation experiments according to the BERT paper and these are the results. I suggest to use parameters in line 4. All training was done on batch size of 32.
Learning Rate | Number of Epochs | Validation loss | Validation Accuracy | F1-Score |
---|---|---|---|---|
3.00E-05 | 3 | 0.05294724515 | 98.30% | 0.5318559557 |
5.00E-05 | 3 | 0.04899719357 | 98.47% | 0.56218628 |
2.00E-05 | 3 | 0.05733459462 | 98.15% | 0.4390547264 |
3.00E-05 | 4 | 0.05020467712 | 98.48% | 0.5528169014 |
5.00E-05 | 4 | 0.05194576555 | 98.43% | 0.5780836421 |
2.00E-05 | 4 | 0.05373481681 | 98.25% | 0.5019740553 |