intuit / judo

Judo is an easy-to-use Command Line Interface (CLI) Integration Testing Framework, driven from a simple yaml file that also contains assertions.
Other
51 stars 21 forks source link
hacktoberfest

CircleCI build NPM Version NPM downloads Code Coverage

Judo is an easy-to-use Command Line Interface (CLI) integration testing framework, driven from a simple yaml file that instructs the framework what commands to run and how to assert the outcome. Test your CLI tools in an automated fashion using nothing but stdin, stdout and stderr.

Prerequisites

Build Dependencies
node >=8.7.0

Installation

Judo is distributed and installed using npm, the package manager that comes bundled with node.js. In order to be able to install Judo, you will need to first ensure that you have node.js installed on your system (which will also install npm for you). Then you can run the following command:

npm i -D @intuit/judo

Then in package.json

"scripts": {
  "test": "judo <tests-dir>"
}

OR if you don't have a package.json because you're not in a JavaScript project using npm, then you can install Judo globally and just run it from the command line:

# install it globally
npm i -g @intuit/judo

# then run it anywhere from the command line
judo <tests-dir>

Building for Local Development

If you would like to locally develop Judo:

# clone the judo repository
git clone https://github.com/intuit/judo

# go to the judo directory
cd judo

# then install the dependencies
npm i

# next build the src/ files into dist/
npm run build

# finally link the binary executable
npm link

# and voila, use Judo from CLI!
judo <file>.yml

Usage

The Judo framework interacts with CLIs and provides assertions against the output. The framework assumes the CLIs are installed and available for use. Judo can execute commands, respond to stdin when expected stdout output occurs, assert the exit code, and assert that the overall output of stdout and stderr contains or doesn't contain certain strings.

# point to a "test scenario" file
judo <file>.yml

# point to a "test scenario" JSON file
judo <file>.json

# or point to a "test suite" directory of "test suite" yaml files. See options section for the optional flag to support JSON files.
judo <directory>

Options

Creating Tests with YAML files

Judo organizes tests into "test suites", which comprise of "test scenarios", and each test scenario can contain "steps". A typical test directory may look like this:

judo-tests/
  |_update/                    # the update "test suite", containing all tests around updating
  |  |_update-download.yml     # a "test scenario" that asserts the update command downloads something
  |  |_update-to-path.yml      # a "test scenario" that asserts the updated binary is in the path
  |_help/                      # the help "test suite", containing all tests around the --help option
     |_help-output/            # a "test scenario" that asserts the help output is correct

Within each "test scenario" yaml file, individual "steps" can be defined which can run commands, run prerequisite setup commands, respond to interactions expected by the command line application, and assert the exit code and stdout/stderr output contains certain things. This is a basic example of a "test suite" with a single step named "helloWorld":

# test-examples/simple/hello-world.yml
run:
  helloWorld:                  # a "helloWorld" test suite "step"
    command: 'echo "hi!"'
    expectCode: 0
    outputContains:
    - 'hi!'
    outputDoesntContain:
    - 'bye!'

Running judo test-examples/simple/hello-world.yml will yield this output:

In this example, a new child process will be spawned which runs echo "hi", then the following assertions will be made:

If the example helloWorld test above had expectCode: 1 instead, the test would fail and produce this output:

Importing test fragments

Judo supports JSON Reference in test scenarios. This means you can create reusable test functionality modules and import them from your main test scenario using the $ref keyword. Imports can be done from a file, URL or another place within the same document.

# test-examples/fragment-test-suite/hello-world-fragment.yml
run:
  testFragment:
    prerequisiteCwd: .
    prerequisites: 
      $ref: '#/components/createTempFile'
    command: cat /tmp/temp-dir/temp-file.txt
    expectCode: 0
    outputContains:
    - this will be in the temp-file.txt
components:
  createTempFile:
    - mkdir -p /tmp/temp-dir
    - echo "this will be in the temp-file.txt" > /tmp/temp-dir/temp-file.txt

Other examples

$ref: 'judo-tests/_fragments/setup.json'
$ref: 'judo-tests/_fragments/setup.yml#/definitions/prerequisites'
$ref: 'http://example.com/setup.yml#/definitions/prerequisites'
$ref: '#/definitions/prerequisites'

Using variable substitution

Variable substitution is supported inside value strings using {{variableName}} syntax. All variables need to be declared inside the vars section in your test scenario like in the following example:

run:
  helloWorld:
    command: 'echo "{{hello}}"'
    expectCode: 0
    outputContains:
    - '/hi!/g'
    outputDoesntContain:
    - '/bye!/g'
vars:
  hello: 'hi!'

Complete YAML Example

This is a more complete example, running multiple commands and responding to the stdin when appropriate:

run:
  someCommand:
    prerequisiteCwd: /Users/efrancis/devel/DEVGRU/judo/temp/
    prerequisites:
    - echo "this command will run before the command being tested"
    - echo "this will too"
    - git clone <some repo>
    - cd <some-repo>
    command: git checkout -b "some-feature"
    cwd: /Users/hansolo/test
    when:
    - 'What do you fly?': 'Millenium Falcon'
    - 'Did you shoot first?' : 'y'
    expectCode: 0
    outputContains:
    - 'This string should be in the complete stdout/stderr output'
    - /This is a regex[!]+/g/
    outputDoesntContain:
    - 'This string should NOT be in the complete stdout/stderr output'
  anotherCommand:
    command: 'echo "hi!"'
    expectCode: 0
    outputContains:
    - 'hi!'
    outputDoesntContain:
    - 'bye!'

In this example, a new child process will be spawned which runs all of the commands in the prerequisites block, inside the prerequisitesCwd directory if it's provided. Once that's complete, another child process will be spawned to execute git checkout -b "some-feature", then:

After that it will spawn another child process and run the echo "hi!" command assertion described in the first example.

Complete JSON Example

This is a more complete example using JSON and similar to the above YML example, running multiple commands and responding to the stdin when appropriate:

{
  "run": {
    "someCommand": {
      "prerequisiteCwd": "/Users/efrancis/devel/DEVGRU/judo/temp/",
      "prerequisites": [
        "echo \"this command will run before the command being tested\"",
        "echo \"this will too\"",
        "git clone <some repo>",
        "cd <some-repo>"
      ],
      "command": "git checkout -b \"some-feature\"",
      "cwd": "/Users/hansolo/test",
      "when": [
        {
          "What do you fly?": "Millenium Falcon"
        },
        {
          "Did you shoot first?": "y"
        }
      ],
      "expectCode": 0,
      "outputContains": [
        "This string should be in the complete stdout/stderr output",
        "/This is a regex[!]+/g/"
      ],
      "outputDoesntContain": [
        "This string should NOT be in the complete stdout/stderr output"
      ]
    },
    "anotherCommand": {
      "command": "echo \"hi!\"",
      "expectCode": 0,
      "outputContains": [
        "hi!"
      ],
      "outputDoesntContain": [
        "bye!"
      ]
    }
  }
}

How it Works

Judo operates in the following order:

Things to Know

Each when response will only happen once, in order of their definition in the yaml file. So if you expect the same input multiple times, you need to write multiple responses to it.

Terminologies