itlab-vision / dl-benchmark

Deep Learning Inference benchmark. Supports OpenVINO™ toolkit, TensorFlow, TensorFlow Lite, ONNX Runtime, OpenCV DNN, MXNet, PyTorch, Apache TVM, ncnn, PaddlePaddle, etc.
http://hpc-education.unn.ru/dli
Apache License 2.0
27 stars 37 forks source link
apache-tvm benchmark-framework caffe deep-learning dgl dli inference inference-benchmark mxnet ncnn onnx-runtime openvino paddlepaddle pytorch spektral tensorflow tensorflow2 tflite

DLI: Deep Learning Inference Benchmark

Introduction

This is a repo of the deep learning inference benchmark, called DLI. DLI is a benchmark for deep learning inference on various hardware. The goal of the project is to develop a software for measuring the performance of a wide range of deep learning models inferring on various popular frameworks and various hardware, as well as regularly publishing the obtained measurements.

The main advantage of DLI from the existing benchmarks is the availability of performance results for a large number of deep models inferred on Intel-platforms (Intel CPUs, Intel Processor Graphics, Intel Movidius Neural Compute Stick).

DLI supports inference using the following frameworks:

More information about DLI is available on the web-site (here (in Russian) or here (in English)) or on the Wiki page.

License

This project is licensed under the terms of the Apache 2.0 license.

Cite

Please consider citing the following papers.

  1. Kustikova V., Vasilyev E., Khvatov A., Kumbrasiev P., Rybkin R., Kogteva N. DLI: Dee p Learning Inference Benchmark // Communications in Computer and Information Science. V.1129. 2019. P. 542-553.

  2. Sidorova A.K., Alibekov M.R., Makarov A.A., Vasiliev E.P., Kustikova V.D. Automation of collecting performance indicators for the inference of deep neural networks in Deep Learning Inference Benchmark // Mathematical modeling and supercomputer technologies. Proceedings of the XXI International Conference (N. Novgorod, November 22–26, 2021). – Nizhny Novgorod: Nizhny Novgorod State University Publishing House, 2021. – 423 p. https://hpc-education.unn.ru/files/conference_hpc/2021/MMST2021_Proceedings.pdf. (In Russian)

  3. Alibekov M.R., Berezina N.E., Vasiliev E.P., Kustikova V.D., Maslova Z.A., Mukhin I.S., Sidorova A.K., Suchkov V.N. Performance analysis methodology of deep neural networks inference on the example of an image classification problem // Russian Supercomputing Days (RSD-2023). - 2023. (In Russian)

  4. Alibekov M.R., Berezina N.E., Vasiliev E.P., Vikhrev I.B., Kamelina Yu.D., Kustikova V.D., Maslova Z.A., Mukhin I.S., Sidorova A.K., Suchkov V.N. Performance analysis methodology of deep neural networks inference on the example of an image classification problem // Numerical Methods and Programming. - 2024. - Vol. 25(2). - P. 127-141. - https://num-meth.ru/index.php/journal/article/view/1332/1264. (In Russian)

Repo structure

Documentation

The latest documentation for the Deep Learning Inference Benchmark (DLI) is available here. This documentation contains detailed information about the DLI components and provides step-by-step guides to build and run the DLI benchmark on your own test infrastructure.

How to build

See the DLI Wiki to get more information.

How to deploy

See the DLI Wiki to get more information.

How to infer deep models

See the DLI Wiki to get more information.

How to contribute

See the DLI Wiki to get more information.

Available benchmarking results

See the DLI Wiki to get more information about benchmaring results on available hardware.

Get a support

Report questions, issues and suggestions, using: