izuna385 / Entity-Linking-Recent-Trends

Recent trends of Entity Linking, Disambiguation, and Representation.
344 stars 18 forks source link
bert entity-disambiguation entity-language-model entity-linking entity-representation entity-resolution natural-language-processing nlp

Recent Trends of Entity Linking

This repository aims to track the progress in Entity Linking. Studies on how to prepare Entity Representations are also listed, as Entity Representations are mandatory with Entity Linking.

Contents

Sub Contents

Trends (~EMNLP'20 and CoNLL'20)

Trends(~ACL'20)

Trends (~ICLR'20)


Trends (~EMNLP'19, CoNLL'19, ICLR'19)

Models for Entity Linking

[]()

[]()

[]()

[]()

[]()

[]()

Entity Representation

[]()

[]()

[]()


Trends (~ACL'19)


Baselines (~ACL'18)

Baseline models Year Dataset code Run? Code address
Entity Linking via Joint Encoding of Types,Descriptions,and Context EMNLP2017 CoNLL-YAGO(82.9,acc),ACE2004,ACE2005,WIKI(89.0,f1) Tensorflow Only Traind model is uploaded here
┗ (Very Similar to the above) Joint Multilingual Supervision for Cross-lingual Entity Linking EMNLP2018 TH-Test,McN-Test,TAC2015 Pytorch Checking here
Neural Collective Entity Linking(NCEL) CL2018 CoNLL-YAGO, ACE2004, AQUAINT,TAC2010(91.0,mic-p),WW pytorch Bug here
Improving Entity Linking by Modeling Latent Relations between Mentions ACL2018 CoNLL-YAGO(93.07,mic-acc),AQUAINT,ACE2004,CWEB,WIKI(84.05,f1) pytorch Evaluation Done here
ELDEN NAACL2018 CoNLL-PPD(93.0,p-mic),TAC2010(89.6,mic-p) lua,torch(lua) Bug here
Deep Joint Entity Disambiguation with Local Neural Attention EMNLP2017 CoNLL-YAGO(92.22,mic-acc),CWEB,WW,ACE2004,AQUAINT,MSNBC lua,torch(lua) Train Running(2019/01/15) here
Hierarchical Losses and New Resources for Fine-grainid Entity Typing and Linking ACL2018 Medmentions,Typenet pytorch Bug here
Joint Learning of the Embedding of Words and Entities for Named Entity Disambiguation(Yamada,Shindo) CoNLL2016 CoNLL-YAGO(91.5,mic-acc),CoNLL-PPD(93.1,p-mic),TAC2010(85.5,mic-acc) pytorch/Tensorflow(original), checking Baseline Original
Learning Distributed Representations of Texts and Entities from Knowledge Base(Yamada,Shindo) ACL2017 CoNLL-PPD(94.7,p-mic),TAC2010(87.7,mic-acc) pytorch/Keras(original) checking Torch, Torch, Original

Datasets

General

Note: major datasets for benchmarking this task are listed at BLINK repository.

Multilingual

Domain-Specific


Bi-Encoder vs Cross-Encoder


How to Get/Prepare Entity Representations?


Another Trend: BERT x KB


Entity Linking Introductions

Local Model and Global Model

Trend in the Point of local vs global

What is local/global Model?


Misc