2020-11-28
numbers
is a quick-and-dirty code that prints some of the
"latency numbers every programmer should know" 1,
2, 3, 4.
n.b. it's for linux on x86-64 with c++17 compiler only (gcc 9, 10; clang 10, 11).
$ git clone https://github.com/jaeheum/numbers.git
$ cd numbers
# a quick-and-dirty run:
$ make all && ./build/numbers
g++ -Wall -Wextra -Wpedantic -Ofast --std=c++17 -Iinclude -c src/nanobench.cc -o build/nanobench.o
g++ -Wall -Wextra -Wpedantic -Ofast --std=c++17 -Iinclude -c src/numbers.cc -o build/numbers.o
g++ -o build/numbers build/*.o -lpthread
Warning, results might be unstable:
* CPU governor is 'schedutil' but should be 'performance'
Recommendations
* Use 'pyperf system tune' before benchmarking. See https://github.com/psf/pyperf
| ns/op | op/s | err% | ins/op | cyc/op | IPC | bra/op | miss% | total | benchmark
|--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:----------
| 16.50 | 60,604,416.47 | 0.0% | 63.01 | 56.08 | 1.124 | 18.00 | 0.0% | 0.00 | `mutex_access`
| 5,217.33 | 191,668.80 | 0.6% | 12,301.00 | 17,736.67 | 0.694 | 4,097.00 | 0.0% | 0.00 | `L1_random_access`
| 250,328.00 | 3,994.76 | 0.2% | 98,329.00 | 850,748.00 | 0.116 | 32,769.00 | 0.0% | 0.00 | `L2_random_access`
| 52,028,319.00 | 19.22 | 1.5% | 5,898,281.00 | 176,516,236.00 | 0.033 | 1,966,097.00 | 0.0% | 0.60 | `L3_random_access`
| 2,796,066,612.00 | 0.36 | 0.0% | 100,664,178.00 |9,487,319,166.00 | 0.011 | 33,555,290.00 | 0.0% | 2.80 | `memory_random_access`
| 8,813,073.00 | 113.47 | 1.7% | 110,100,499.00 | 29,845,812.00 | 3.689 | 31,457,284.00 | 0.0% | 0.10 | `sorted_memory_branch_mispredictions`
| 57,787,781.00 | 17.30 | 0.1% | 110,100,513.00 | 196,153,140.00 | 0.561 | 31,457,298.00 | 25.0% | 0.64 | `unsorted_memory_branch_mispredictions`
| 28,025,098.00 | 35.68 | 0.1% | 23,985.00 | 94,954,316.00 | 0.000 | 4,964.00 | 0.3% | 0.31 | `memory_copy_1MiB`
| 156,300,394.00 | 6.40 | 0.0% | 4,350.00 | 53,176.00 | 0.082 | 796.00 | 21.6% | 0.16 | `fwrite_1MiB_to_disk`
| 388,215.00 | 2,575.89 | 0.0% | 81,101.00 | 77,384.00 | 1.048 | 18,564.00 | 0.6% | 0.00 | `fseek_from_disk`
| 34,513,692.00 | 28.97 | 0.0% | 67,884.00 | 396,406.00 | 0.171 | 15,174.00 | 2.5% | 0.03 | `fread_1MiB_from_disk`
L1_random_access 1.3 ns 4.3 cycles
L2_random_access 7.6 ns 26.0 cycles
L3_random_access 26.5 ns 89.8 cycles
memory_random_access 83.3 ns 282.7 cycles
branch_miss_penalty 6.2 ns 21.2 cycles
mutex_access 16.5 ns 56.1 cycles
fseek_from_disk 1516.5 ns 302.3 cycles
memory_copy_1MiB 109473.0 ns 370915.3 cycles
fread_1MiB_from_disk 134819.1 ns 1548.5 cycles
fwrite_1MiB_to_disk 610548.4 ns 207.7 cycles
numbers
's output comes from simplistic, best-effort, low-cost, fast
measurements.
For a more careful measurement, run the following commands:
$ sudo pip install pyperf # so that 'sudo pyperf system tune' can run
## On Arch linux, pyperf is available as a package
$ ./print-numbers
n.b. Read notes.md for
benchmarking tips and more sophisticated
tools.
notes.md also contains information about internals of numbers
.
There are also known issues.
Depending on Linux configuration, numbers
may not be able to access
hardware performance counters. In this case, numbers
does not print
branch_miss_penalty
row and cycles
column in the output.
MIT License
numbers
benefits from