jakeret / abcpmc

Approximate Bayesian Computation Population Monte Carlo
GNU General Public License v3.0
40 stars 19 forks source link

============================= abcpmc

.. image:: https://badge.fury.io/py/abcpmc.svg :target: http://badge.fury.io/py/abcpmc

.. image:: https://travis-ci.org/jakeret/abcpmc.svg?branch=master :target: https://travis-ci.org/jakeret/abcpmc

.. image:: https://coveralls.io/repos/jakeret/abcpmc/badge.svg?branch=master :target: https://coveralls.io/r/jakeret/abcpmc?branch=master

.. image:: https://img.shields.io/badge/docs-latest-blue.svg?style=flat :target: http://abcpmc.readthedocs.org/en/latest

.. image:: http://img.shields.io/badge/arXiv-1504.07245-orange.svg?style=flat :target: http://arxiv.org/abs/1504.07245

A Python Approximate Bayesian Computing (ABC) Population Monte Carlo (PMC) implementation based on Sequential Monte Carlo (SMC) with Particle Filtering techniques.

.. image:: https://raw.githubusercontent.com/jakeret/abcpmc/master/docs/abcpmc.png :alt: approximated 2d posterior (created with triangle.py). :align: center

The abcpmc package has been developed at ETH Zurich in the Software Lab of the Cosmology Research Group <http://www.cosmology.ethz.ch/research/software-lab.html> of the ETH Institute of Astronomy <http://www.astro.ethz.ch>.

The development is coordinated on GitHub <http://github.com/jakeret/abcpmc> and contributions are welcome. The documentation of abcpmc is available at readthedocs.org <http://abcpmc.readthedocs.org/> and the package is distributed over PyPI <https://pypi.python.org/pypi/abcpmc>_.

Features