LSF blockwise postprocessing library for processing predictions. No script are needed. you just need to provide a yaml file with the configuration of the postprocessing task.
Example postprocessing yaml file
task:
task_name: "20240710_c-elegans-op50_ld"
tmpdir: "/nrs/cellmap/zouinkhim/tmp_daisy_2/"
num_cpus: 1
num_workers: 200
billing: "cellmap"
# empty_tmpdir: True
data:
input_container: '/nrs/cellmap/zouinkhim/predictions/c-elegen/op50/c_elegen_bw_op50_ld_scratch_0_300000.zarr'
in_dataset: 'ld/ld'
output_container: '/nrs/cellmap/zouinkhim/predictions/c-elegen/op50/jrc_c-elegans-bw-1_postprocessed.zarr'
output_group: 'ld'
# roi: "[320000:330000,100000:110000,10000:20000]"
context: 8
process:
step_1:
# override: True
skip: True
params:
type: segmentation
save_edges: True
steps:
instances:
gaussian_kernel: 4
threshold: 0.7
step_2:
params:
type: relabel
$ process_blockwise config.yaml
Ps. The postprocessing code is still under development. And made for personal usage. If you have any issues or questions, please contact us