.. image:: https://github.com/jannikmi/multivar_horner/actions/workflows/build.yml/badge.svg?branch=master :target: https://github.com/jannikmi/multivar_horner/actions?query=branch%3Amaster :alt: Build status
.. image:: https://readthedocs.org/projects/multivar_horner/badge/?version=latest :alt: documentation status :target: https://multivar_horner.readthedocs.io/en/latest/?badge=latest
.. image:: https://img.shields.io/pypi/wheel/multivar-horner.svg :target: https://pypi.python.org/pypi/multivar-horner
.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white :target: https://github.com/pre-commit/pre-commit :alt: pre-commit
.. image:: https://pepy.tech/badge/multivar-horner :alt: Total PyPI downloads :target: https://pepy.tech/project/multivar-horner
.. image:: https://img.shields.io/pypi/v/multivar_horner.svg :alt: latest version on PyPI :target: https://pypi.python.org/pypi/multivar-horner
.. image:: https://joss.theoj.org/papers/0b514c6894780f3cc81ed88c141631d4/status.svg :alt: JOSS status :target: https://joss.theoj.org/papers/0b514c6894780f3cc81ed88c141631d4
.. image:: https://zenodo.org/badge/155578190.svg :target: https://zenodo.org/badge/latestdoi/155578190
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black
multivar_horner
is a python package implementing a multivariate
Horner scheme ("Horner's method", "Horner's rule") <https://en.wikipedia.org/wiki/Horner%27s_method>
__
for efficiently evaluating multivariate polynomials.
Quick Guide:
.. code-block:: console
pip install multivar_horner
For efficiency this package is compiling the instructions required for polynomial evaluation to C by default.
If you don't have a C compiler (gcc
or cc
) installed you also need to install numba for using an alternative method:
.. code-block:: console
pip install multivar_horner[numba]
Simple example:
.. code-block:: python
import numpy as np
from multivar_horner import HornerMultivarPolynomial
# input parameters defining the polynomial
# p(x) = 5.0 + 1.0 x_1^3 x_2^1 + 2.0 x_1^2 x_3^1 + 3.0 x_1^1 x_2^1 x_3^1
coefficients = np.array([[5.0], [1.0], [2.0], [3.0]], dtype=np.float64)
exponents = np.array([[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]], dtype=np.uint32)
# [#ops=7] p(x) = x_1 (x_1 (x_1 (1.0 x_2) + 2.0 x_3) + 3.0 x_2 x_3) + 5.0
horner_polynomial = HornerMultivarPolynomial(coefficients, exponents)
x = np.array([-2.0, 3.0, 1.0], dtype=np.float64)
p_x = horner_polynomial(x)
Also see:
Documentation <https://multivar-horner.readthedocs.io/en/latest/>
__GitHub <https://github.com/jannikmi/multivar_horner>
__PyPI <https://pypi.python.org/pypi/multivar_horner/>
__paper (JOSS) <https://joss.theoj.org/papers/10.21105/joss.02392>
__paper (arXiv) <https://arxiv.org/abs/2007.13152>
__