javascriptdata / danfojs

Danfo.js is an open source, JavaScript library providing high performance, intuitive, and easy to use data structures for manipulating and processing structured data.
https://danfo.jsdata.org/
MIT License
4.81k stars 209 forks source link
danfojs data-analysis data-analytics data-manipulation data-science dataframe javascript pandas plotting-charts stream-data stream-processing table tensorflow tensors


Danfojs: powerful javascript data analysis toolkit

Node.js CI Coverage Status Twitter Patreon donate button

What is it?

Danfo.js is a javascript package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It is heavily inspired by Pandas library, and provides a similar API. This means that users familiar with Pandas, can easily pick up danfo.js.

Main Features

Installation

There are three ways to install and use Danfo.js in your application

npm install danfojs-node

or

yarn add danfojs-node

For client-side applications built with frameworks like React, Vue, Next.js, etc, you can install the [danfojs]() version:

npm install danfojs

or

yarn add danfojs

For use directly in HTML files, you can add the latest script tag from JsDelivr to your HTML file:

    <script src="https://cdn.jsdelivr.net/npm/danfojs@1.1.2/lib/bundle.js"></script>

See all available versions here

Quick Examples

Example Usage in the Browser


<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <script src="https://cdn.jsdelivr.net/npm/danfojs@1.1.2/lib/bundle.js"></script>

    <title>Document</title>
  </head>

  <body>
    <div id="div1"></div>
    <div id="div2"></div>
    <div id="div3"></div>

    <script>

      dfd.readCSV("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
          .then(df => {

              df['AAPL.Open'].plot("div1").box() //makes a box plot

              df.plot("div2").table() //display csv as table

              new_df = df.setIndex({ column: "Date", drop: true }); //resets the index to Date column
              new_df.head().print() //
              new_df.plot("div3").line({
                  config: {
                      columns: ["AAPL.Open", "AAPL.High"]
                  }
              })  //makes a timeseries plot

          }).catch(err => {
              console.log(err);
          })
    </script>
  </body>
</html>

Output in Browser:

Example usage in Nodejs

const dfd = require("danfojs-node");

const file_url =
  "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv";
dfd
  .readCSV(file_url)
  .then((df) => {
    //prints the first five columns
    df.head().print();

    // Calculate descriptive statistics for all numerical columns
    df.describe().print();

    //prints the shape of the data
    console.log(df.shape);

    //prints all column names
    console.log(df.columns);

    // //prints the inferred dtypes of each column
    df.ctypes.print();

    //selecting a column by subsetting
    df["Name"].print();

    //drop columns by names
    let cols_2_remove = ["Age", "Pclass"];
    let df_drop = df.drop({ columns: cols_2_remove, axis: 1 });
    df_drop.print();

    //select columns by dtypes
    let str_cols = df_drop.selectDtypes(["string"]);
    let num_cols = df_drop.selectDtypes(["int32", "float32"]);
    str_cols.print();
    num_cols.print();

    //add new column to Dataframe

    let new_vals = df["Fare"].round(1);
    df_drop.addColumn("fare_round", new_vals, { inplace: true });
    df_drop.print();

    df_drop["fare_round"].round(2).print(5);

    //prints the number of occurence each value in the column
    df_drop["Survived"].valueCounts().print();

    //print the last ten elementa of a DataFrame
    df_drop.tail(10).print();

    //prints the number of missing values in a DataFrame
    df_drop.isNa().sum().print();
  })
  .catch((err) => {
    console.log(err);
  });

Output in Node Console:

Notebook support

See the Official Getting Started Guide

Documentation

The official documentation can be found here

Danfo.js Official Book

We published a book titled "Building Data Driven Applications with Danfo.js". Read more about it here

Discussion and Development

Development discussions take place here.

Contributing to Danfo

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. A detailed overview on how to contribute can be found in the contributing guide.

Licence MIT

Created by Rising Odegua and Stephen Oni

Danfo.js - Open Source JavaScript library for manipulating data. | Product Hunt Embed