CryoSegNet is a method using foundational image segmentation model for picking protein particles in cryo-EM micrographs. It is trained on 22 different protein types including membrane protein, signaling protein, transport protein, viral protein, ribosomes, etc. It uses U-Net and SAM's automatic mask generator for predicting the protein particles coordinates from the cryo-EM micrographs and generates output in the form of .star file which can be used in popular tools like RELION and CryoSPARC for generating 3D density maps. It has achieved the state-of-the-art performance and has surpassed the popular AI pickers like crYOLO and Topaz.
Figure below demonstrates the overview of particle picking process used by CryoSegNet.
![Alt text](<assets/General Outline.jpg>)
git clone https://github.com/jianlin-cheng/CryoSegNet.git
cd CryoSegNet/
curl https://calla.rnet.missouri.edu/CryoSegNet/pretrained_models.tar.gz --output pretrained_models.tar.gz
tar -xvf pretrained_models.tar.gz
rm pretrained_models.tar.gz
curl https://calla.rnet.missouri.edu/CryoSegNet/train_dataset.tar.gz --output train_dataset.tar.gz
tar -xvf train_dataset.tar.gz
rm train_dataset.tar.gz
curl https://calla.rnet.missouri.edu/CryoSegNet/test_dataset.tar.gz --output test_dataset.tar.gz
tar -xvf test_dataset.tar.gz
rm test_dataset.tar.gz
conda env create -f environment.yml
conda activate cryosegnet
SN | EMPAIR ID | Protein Type | Image Size | Total Structure Weight (kDa) | Training Images | Validation Images | Total Images |
---|---|---|---|---|---|---|---|
1 | 10005 | TRPV1 Transport Protein | (3710,3710) | 272.97 | 23 | 6 | 29 |
2 | 10059 | TRPV1 Transport Protein | (3838,3710) | 317.88 | 232 | 59 | 291 |
3 | 10075 | Bacteriophage MS2 | (4096,4096) | 1000* | 239 | 60 | 299 |
4 | 10077 | Ribosome (70S) | (4096,4096) | 2198.78 | 240 | 60 | 300 |
5 | 10096 | Viral Protein | (3838,3710) | 150* | 240 | 60 | 300 |
6 | 10184 | Aldolase | (3838,3710) | 150* | 236 | 60 | 296 |
7 | 10240 | Lipid Transport Protein | (3838,3710) | 171.72 | 239 | 60 | 299 |
8 | 10289 | Transport Protein | (3710,3838) | 361.39 | 240 | 60 | 300 |
9 | 10291 | Transport Protein | (3710,3838) | 361.39 | 240 | 60 | 300 |
10 | 10387 | Viral Protein | (3710,3838) | 185.87 | 239 | 60 | 299 |
11 | 10406 | Ribosome (70S) | (3838,3710) | 632.89 | 191 | 48 | 139 |
12 | 10444 | Membrane Protein | (5760,4092) | 295.89 | 236 | 60 | 296 |
13 | 10526 | Ribosome (50S) | (7676,7420) | 1085.81 | 176 | 44 | 220 |
14 | 10590 | TRPV1 Transport Protein | (3710,3838) | 1000* | 236 | 60 | 296 |
15 | 10671 | Signaling Protein | (5760,4092) | 77.14 | 238 | 60 | 298 |
16 | 10737 | Membrane Protein | (5760,4092) | 155.83 | 233 | 59 | 292 |
17 | 10760 | Membrane Protein | (3838,3710) | 321.69 | 240 | 60 | 300 |
18 | 10816 | Transport Protein | (7676,7420) | 166.62 | 240 | 60 | 300 |
19 | 10852 | Signaling Protein | (5760,4092) | 157.81 | 274 | 69 | 343 |
20 | 11051 | Transcription/DNA/RNA | (3838,3710) | 357.31 | 240 | 60 | 300 |
21 | 11057 | Hydrolase | (5760,4092) | 149.43 | 236 | 59 | 295 |
22 | 11183 | Signaling Protein | (5760,4092) | 139.36 | 240 | 60 | 300 |
Total | 4,948 | 1,244 | 6,192 |
SN | EMPAIR ID | Protein Type | Image Size | Total Structure Weight (kDa) | Total Images |
---|---|---|---|---|---|
1 | 10017 | β -galactosidase | (4096,4096) | 450* | 84 |
2 | 10028 | Ribosome (80S) | (4096,4096) | 2135.89 | 300 |
3 | 10081 | Transport Protein | (3710,3838) | 298.57 | 300 |
4 | 10093 | Membrane Protein | (3838,3710) | 779.4 | 295 |
5 | 10345 | Signaling Protein | (3838,3710) | 244.68 | 295 |
6 | 10532 | Viral Protein | (4096,4096) | 191.76 | 300 |
7 | 11056 | Transport Protein | (5760,4092) | 88.94 | 305 |
Total | 1879 |
This section allows you to pick protein particles and generate .star file which can be used in tools like CryoSPARC for further post-processing.
If you have your own dataset available in .jpg format, place them under the directory my_dataset
and run:
python generate_starfile_new_data_jpg.py --file_name abc.star
If you have your own dataset available in .mrc format, place them under the directory my_dataset
and run:
python generate_starfile_new_data_mrc.py --file_name abc.star
Optional Arguments:
--my_dataset_path (str, default: "my_dataset"): Path to your own dataset.
--output_path (str, default: "output"): Output directory.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
--file_name (str, default="abc.star): Filename for picked proteins coordinates.
This section allows you to pick protein particles and represent them by circles in the micrographs.
If you have your own dataset available in .jpg format, place them under the directory my_dataset
and run:
python predict_new_data_jpg.py
If you have your own dataset available with motion correction in .mrc format, place them under the directory my_dataset
and run.
python predict_new_data_mrc.py
Optional Arguments:
--my_dataset_path (str, default: "my_dataset"): Path to your own dataset.
--output_path (str, default: "output"): Output directory.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
If you use the motion corrected dataset by CryoSPARC, place them under the directory my_dataset
and remove the id appended in the beginning of filename for each micrographs.
To remove the id appended in the beginning of each micrograph you may use the following command:
python remove_id.py
If Patch CTF Estimation job in CryoSPARC fails fails for some of your micrographs remove those micrographs from my_dataset
folder and run:
python predict_new_data_mrc.py
Optional Arguments:
--my_dataset_path (str, default: "my_dataset"): Path to your own dataset.
--output_path (str, default: "output"): Output directory.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
After getting the star file you may use this file in CryoSPARC for further processing:
From the builder in CryoSPARC, select the Import Particles
job to import the particles available in star file. This job expects:
From the builder in CryoSPARC, select the Extract Mics.
job to extract the particles.
This job expects:
After the particles are extracted with this job, you may run other jobs like 2D Class
, Select 2D
, Ab-Initio
, Homo Refine
, etc depending upon your interest.
This function generates output in the form of .star file which can be utilized in tools like CryoSPARC for further steps like selecting the 2D classes, 3D reconstruction and so on.
python generate_starfile.py --empiar_id 10081 --file_name 10081.star
Optional Arguments:
--test_dataset_path (str, default: "test_dataset"): Path to the test dataset.
--output_path (str, default: "output"): Output directory.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
--empiar_id (str, default: "10081"): EMPIAR ID for prediction.
--file_name (str, default="10081.star): Filename for picked proteins coordinates.
This function outputs micrographs with predicted proteins represented by circles.
python predict.py --empiar_id 10081
Optional Arguments:
--test_dataset_path (str, default: "test_dataset"): Path to the test dataset.
--output_path (str, default: "output"): Output directory.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
--empiar_id (str, default: "10081"): EMPIAR ID for prediction.
python train.py
Optional Arguments:
--train_dataset_path (str, default: "train_dataset"): Path to the training dataset.
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
--pin_memory (flag): Enable pin_memory for data loading if using CUDA.
--num_workers (int, default: 8): Number of data loading workers.
--num_channels (int, default: 1): Number of input channels.
--num_classes (int, default: 1): Number of classes.
--num_levels (int, default: 3): Number of levels in the model.
--learning_rate (float, default: 0.0001): Learning rate.
--num_epochs (int, default: 200): Number of training epochs.
--batch_size (int, default: 6): Batch size.
--input_image_width (int, default: 1024): Input image width.
--input_image_height (int, default: 1024): Input image height.
--input_shape (int, default: 1024): Input image shape.
--logging (flag): Enable logging for wandb.
--architecture_name : Model architecture name.
Example Usage:
python train.py --batch_size 12 --learning_rate 0.001 --num_epochs 10 --architecture_name "my_custom_model"
You need a star file to have coordinates of proteins picked manually. Refer to finetune_dataset/sample.star
and make your star file in the same format
Place all .mrc files inside finetune_dataset/mrc_files/
directory
Denoise all the .mrc files and they will be stored inside finetune_dataset/images/
directory
Run:
python utils/generate_jpg.py
finetune_dataset/masks/
directoryRun:
python utils/generate_masks.py --file_name finetune_dataset/sample.star
You need to input the diameter size of protein in pixel value.
python finetune.py --train_dataset_path finetune_dataset/
Optional Arguments:
--device (str, default: "cuda:0" if available, else "cpu"): Device for training (cuda:0 or cpu).
--pin_memory (flag): Enable pin_memory for data loading if using CUDA.
--num_workers (int, default: 8): Number of data loading workers.
--num_epochs (int, default: 200): Number of training epochs.
--batch_size (int, default: 6): Batch size.
Find the Precision, Recall, F1-Score and Dice Score
curl https://calla.rnet.missouri.edu/CryoSegNet/Evaluation/Groundtruth.tar.gz --output Evaluation/Groundtruth.tar.gz
curl https://calla.rnet.missouri.edu/CryoSegNet/Evaluation/General.tar.gz --output Evaluation/General.tar.gz
tar -xvf Evaluation/Groundtruth.tar.gz -C Evaluation/
tar -xvf Evaluation/General.tar.gz -C Evaluation/
rm Evaluation/Groundtruth.tar.gz
rm Evaluation/General.tar.gz
python utils/precision_recall.py --test_dataset_path Evaluation/Groundtruth
Open Access \ This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
If you use the code or data associated with this research work or otherwise find this data useful, please cite: \ @article {Gyawali2023, \ author = {Gyawali, Rajan and Dhakal, Ashwin and Wang, Liguo and Cheng, Jianlin}, \ title = {Accurate cryo-EM protein particle picking by integrating the foundational AI image segmentation model and specialized U-Net }, \ year = {2023} }