We propose a new method, dubbed NeuRIS, for high quality reconstruction of indoor scenes.
Scene data used in NeuRIS can be downloaded from here and extract the scene data into folder dataset/indoor
. And the scene data used in ManhattanSDF are also included for convenient comparisons.
The data is organized as follows:
<scene_name>
|-- cameras_sphere.npz # camera parameters
|-- image
|-- 0000.png # target image for each view
|-- 0001.png
...
|-- depth
|-- 0000.png # target depth for each view
|-- 0001.png
...
|-- pose
|-- 0000.txt # camera pose for each view
|-- 0001.txt
...
|-- pred_normal
|-- 0000.npz # predicted normal for each view
|-- 0001.npz
...
|-- xxx.ply # GT mesh or point cloud from MVS
|-- trans_n2w.txt # transformation matrix from normalized coordinates to world coordinates
Refer to the file for more details about data preparation of ScanNet or private data.
conda create -n neuris python=3.8
conda activate neuris
conda install pytorch=1.9.0 torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt
python ./exp_runner.py --mode train --conf ./confs/neuris.conf --gpu 0 --scene_name scene0625_00
python exp_runner.py --mode validate_mesh --conf <config_file> --is_continue
python ./exp_evaluation.py --mode eval_3D_mesh_metrics
Cite as below if you find this repository is helpful to your project:
@inproceedings{wang2022neuris,
title={Neuris: Neural reconstruction of indoor scenes using normal priors},
author={Wang, Jiepeng and Wang, Peng and Long, Xiaoxiao and Theobalt, Christian and Komura, Taku and Liu, Lingjie and Wang, Wenping},
booktitle={European Conference on Computer Vision},
pages={139--155},
year={2022},
organization={Springer}
}