jinningli / IP-FSRGAN

Source code for the paper "ID Preserving Face Super-ResolutionGenerative Adversarial Networks"
4 stars 2 forks source link

IP-FSRGAN

Requirements

training

python3 train.py --opt [path_to_training_config]

dataset

- `niter` how many batches to train?
- `val_freq` val image will be saved in `/valid`. Need manually deleted for each experiment
#### other settings

"name": "lightcnn_VISHR_numpy128crop" // please remove "debug" during training , "use_tb_logger": true , "model":"srragan" ,"scale": 4 , "gpu_ids": [0,1,2,3,4,5,6]

- `name` checkpoints will be saved in `root/Experiments/name/models`. Attention: new experiment with the same name will overwrite the old one

## test

python3 test.py --opt [path_to_test_config]

#### testset
"test 1": {
"name": "FaceTest_Crop_1",
"resize": 1,
"mode": "LRHR",
 "downsample": "numpy",
  "dataroot_HR": "/mnt/WXRG0235/jnli/05_RegWorkspace/image/A40P/__backups_rgbfull__collected_crop"

},


- `resize` resize the HR image before downsampling

### Reference
ESRGAN https://github.com/xinntao/BasicSR