under construction...
It is a review site that recorded a match between learned AIs with dataset, and it is the first version that use Q-table learning(dynamic state list).
It is not an algorithm of alpha go zero.
http://115.68.23.80:81/web/review.html
python self_play_and_train.py --save_dir="your path to save your model and self-play dataset" --max_step=100 --max_episode=10000 --max_simulation=200 --episode_interval_to_train=10 --print_mcts_tree=False --print_mcts_search=False
mkdir dataset
cd dataset
wget http://img.hovits.com/korean-chess-records-dataset.txt
python parse_dataset.py --dataset_dir="the path you downloaded"
python optimizer.py --dataset_dir="the path you converted" --save_dir="your path to save your model" --epoch=10 --num_model_layers=20 --batch_size=32
python user_vs_trained_mcts.py --save_dir="the model dir you trained" --model_file_name="the model name you trained" --max_step=100 --max_episode=10000 --max_simulation=200 --print_mcts_tree=False --print_mcts_search=False
python play_trained_mcts_vs_trained_mcts.py --save_dir="the model dir you trained" --model_file_name="the model name you trained" --max_step=100 --max_episode=10000 --max_simulation=200 --print_mcts_tree=False --print_mcts_search=False
python play_net_vs_net.py --save_dir="the model dir you trained" --model_file_name="the model name you trained" --max_step=100 --max_episode=10000 --max_simulation=200 --print_mcts_tree=False --print_mcts_search=False