[CVPR 2023]ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing
Zequn Zeng,
Hao Zhang,
Zhengjue Wang,
Ruiying Lu,
Dongsheng Wang,
Bo Chen
Please download CLIP and BERT from Huggingface Space.
SketchyCOCOcaption benchmark in our work is available here.
Environments setup.
pip install -r requirements.txt
ConZIC supports arbitary generation orders by change order. You can increase alpha for more fluency, beta for more image content. Notably, there is a trade-off between fluency and image-matching degree.
Sequential: update tokens in classical left to right order. At each iteration, the whole sentence will be updated.
python demo.py --run_type "caption" --order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
--alpha 0.02 --beta 2.0
Shuffled: update tokens in random shuffled generation order, different orders resulting in different captions.
python demo.py --run_type "caption" --order "shuffle" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
--alpha 0.02 --beta 2.0
Random: only randomly select a position and then update this token at each iteration, high diversity due to high randomness.
python demo.py --run_type "caption" --order "random" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 3
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
--alpha 0.02 --beta 2.0
ConZIC supports many text-related controllable signals. For examples:
Sentiments(positive/negative): you can increase gamma for higher controllable degree, there is also a trade-off.
python demo.py
--run_type "controllable" --control_type "sentiment" --sentiment_type "positive"
--order "sequential" --sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
--alpha 0.02 --beta 2.0 --gamma 5.0
Part-of-speech(POS): it will meet the predefined POS templete as much as possible.
python demo.py
--run_type "controllable" --control_type "pos" --order "sequential"
--pos_type "your predefined POS templete"
--sentence_len 10 --caption_img_path "./examples/girl.jpg" --samples_num 1
--lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
--alpha 0.02 --beta 2.0 --gamma 5.0
Length: change sentence_len.
We highly recommend to use the following WebUI demo in your browser from the local url: http://127.0.0.1:7860.
pip install gradio
python app.py --lm_model "bert-base-uncased" --match_model "openai/clip-vit-base-patch32"
You can also use the demo.launch() function to create a public link used by anyone to access the demo from their browser by setting share=True.
Please cite our work if you use it in your research:
@article{zeng2023conzic,
title={ConZIC: Controllable Zero-shot Image Captioning by Sampling-Based Polishing},
author={Zeng, Zequn and Zhang, Hao and Wang, Zhengjue and Lu, Ruiying and Wang, Dongsheng and Chen, Bo},
journal={arXiv preprint arXiv:2303.02437},
year={2023}
}
If you have any questions, please contact zzequn99@163.com or zhanghao_xidian@163.com.
This code is based on the bert-gen and MAGIC.
Thanks for Jiaqing Jiang providing huggingface and Colab demo.