The handwritten dataset used is IAM.
In order to make TFRecord file use the function from util.py
In order to run the training:
python trainer/run.py --input_path data/handwritten-test.tfrecords --input_path_test data/handwritten-test.tfrecords --model_dir models --board_path TFboard --filenameNr 1 --save_step 500 --batch_size 10 --max_steps 1000 --display_step 100
In order to get a sample from trained model:
python run.py --sample --shuffle_batch --batch_size 1 --input_path data/handwritten-test.tfrecords --input_path_test data/handwritten-test.tfrecords --model_dir models --board_path TFboard --filenameNr 1
In order to see statistics in tensorboard:
tensorboard --logdir=gs://my-first-bucket-mosnoi/handwritten/m2/TFboard2 --port=8080
rm -rf gs://my-first-bucket-mosnoi/handwritten3x200GRUGRID2
gcloud beta ml jobs submit training handwrittenRMSP3x200LSTM1 \
--package-path=trainer \
--module-name=trainer.run \
--staging-bucket=gs://my-first-bucket-mosnoi/ \
--region=us-central1 \
--scale-tier=BASIC_GPU \
-- \
--input_path gs://my-first-bucket-mosnoi/handwritten/m2/tf-data/handwritten-test-{}.tfrecords \
--input_path_test gs://my-first-bucket-mosnoi/handwritten/m2/tf-data/handwritten-test-55.tfrecords \
--board_path gs://my-first-bucket-mosnoi/handwritten/m2/TFboard2_handwrittenRMSP3x200LSTM1 \
--model_dir gs://my-first-bucket-mosnoi/handwritten/m2/models2 \
--filenameNr 50 \
--save_step 5000 \
--display_step 100 \
--max_steps 10000 \
--batch_size 50 \
--learning_rate 0.001 \
--keep_prob 0.8 \
--layers 3 \
--hidden 250 \
--rnn_cell LSTM \
--optimizer RMSP \
--initializer graves \
--bias -0.1 \
--shuffle_batch \
--gpu
//--optimizer RMSP --momentum 0.9 --decay 0.95
// python run.py --layers 1 --hidden 20 --rnn_cell GRUGRID2 --optimizer RMSP --insertLastState
// python run.py --shuffle_batch --layers 3 --sample --batch_size 1 --hidden 200 --insertLastState