jonathf / numpoly

Numpy compatible polynomial representation
https://numpoly.readthedocs.io
BSD 2-Clause "Simplified" License
12 stars 6 forks source link

.. image:: https://github.com/jonathf/numpoly/raw/master/docs/.static/numpoly_logo.svg :height: 200 px :width: 200 px :align: center

|circleci| |codecov| |readthedocs| |downloads| |pypi|

.. |circleci| image:: https://circleci.com/gh/jonathf/numpoly/tree/master.svg?style=shield :target: https://circleci.com/gh/jonathf/numpoly/tree/master .. |codecov| image:: https://codecov.io/gh/jonathf/numpoly/branch/master/graph/badge.svg :target: https://codecov.io/gh/jonathf/numpoly .. |readthedocs| image:: https://readthedocs.org/projects/numpoly/badge/?version=master :target: http://numpoly.readthedocs.io/en/master/?badge=master .. |downloads| image:: https://img.shields.io/pypi/dm/numpoly :target: https://pypistats.org/packages/numpoly .. |pypi| image:: https://badge.fury.io/py/numpoly.svg :target: https://badge.fury.io/py/numpoly

Numpoly is a generic library for creating, manipulating and evaluating arrays of polynomials based on numpy.ndarray objects.

Installation

Installation should be straight forward:

.. code-block:: bash

pip install numpoly

Example Usage

Constructing polynomial is typically done using one of the available constructors:

.. code-block:: python

>>> import numpoly
>>> numpoly.monomial(start=0, stop=3, dimensions=2)
polynomial([1, q0, q0**2, q1, q0*q1, q1**2])

It is also possible to construct your own from symbols together with numpy <https://python.org>_:

.. code-block:: python

>>> import numpy
>>> q0, q1 = numpoly.variable(2)
>>> numpoly.polynomial([1, q0**2-1, q0*q1, q1**2-1])
polynomial([1, q0**2-1, q0*q1, q1**2-1])

Or in combination with numpy objects using various arithmetics:

.. code-block:: python

>>> q0**numpy.arange(4)-q1**numpy.arange(3, -1, -1)
polynomial([-q1**3+1, -q1**2+q0, q0**2-q1, q0**3-1])

The constructed polynomials can be evaluated as needed:

.. code-block:: python

>>> poly = 3*q0+2*q1+1
>>> poly(q0=q1, q1=[1, 2, 3])
polynomial([3*q1+3, 3*q1+5, 3*q1+7])

Or manipulated using various numpy functions:

.. code-block:: python

>>> numpy.reshape(q0**numpy.arange(4), (2, 2))
polynomial([[1, q0],
            [q0**2, q0**3]])
>>> numpy.sum(numpoly.monomial(13)[::3])
polynomial(q0**12+q0**9+q0**6+q0**3+1)

Installation

Installation should be straight forward from pip <https://pypi.org/>_:

.. code-block:: bash

pip install numpoly

Alternatively, to get the most current experimental version, the code can be installed from Github <https://github.com/>_ as follows:

Development

Installing numpoly for development can be done from the repository root with the command::

pip install -e .[dev]

The deployment of the code is done with Python 3.10 and dependencies are then fixed using::

pip install -r requirements-dev.txt

Testing

To run test:

.. code-block:: bash

pytest --doctest-modules numpoly test docs/user_guide/*.rst README.rst

Documentation

To build documentation locally on your system, use make from the doc/ folder:

.. code-block:: bash

cd doc/
make html

Run make without argument to get a list of build targets. All targets stores output to the folder doc/.build/html.

Note that the documentation build assumes that pandoc is installed on your system and available in your path.