.. image:: https://github.com/jonathf/numpoly/raw/master/docs/.static/numpoly_logo.svg :height: 200 px :width: 200 px :align: center
|circleci| |codecov| |readthedocs| |downloads| |pypi|
.. |circleci| image:: https://circleci.com/gh/jonathf/numpoly/tree/master.svg?style=shield :target: https://circleci.com/gh/jonathf/numpoly/tree/master .. |codecov| image:: https://codecov.io/gh/jonathf/numpoly/branch/master/graph/badge.svg :target: https://codecov.io/gh/jonathf/numpoly .. |readthedocs| image:: https://readthedocs.org/projects/numpoly/badge/?version=master :target: http://numpoly.readthedocs.io/en/master/?badge=master .. |downloads| image:: https://img.shields.io/pypi/dm/numpoly :target: https://pypistats.org/packages/numpoly .. |pypi| image:: https://badge.fury.io/py/numpoly.svg :target: https://badge.fury.io/py/numpoly
Numpoly is a generic library for creating, manipulating and evaluating
arrays of polynomials based on numpy.ndarray
objects.
numpy
, as the library
provides a high level of compatibility with the numpy.ndarray
, including
fancy indexing, broadcasting, numpy.dtype
, vectorized operations to name
a few.numpy
.numpy.<name>
functions using numpy
's
compatibility layer (which also exists as numpoly.<name>
equivalents)./
, %
and
divmod
.poly.exponents
, poly.coefficients
, poly.indeterminants
etc.numpoly.derivative
,
numpoly.gradient
, numpoly.hessian
etc.numpoly.decompose
.numpoly.call
.Installation should be straight forward:
.. code-block:: bash
pip install numpoly
Constructing polynomial is typically done using one of the available constructors:
.. code-block:: python
>>> import numpoly
>>> numpoly.monomial(start=0, stop=3, dimensions=2)
polynomial([1, q0, q0**2, q1, q0*q1, q1**2])
It is also possible to construct your own from symbols together with
numpy <https://python.org>
_:
.. code-block:: python
>>> import numpy
>>> q0, q1 = numpoly.variable(2)
>>> numpoly.polynomial([1, q0**2-1, q0*q1, q1**2-1])
polynomial([1, q0**2-1, q0*q1, q1**2-1])
Or in combination with numpy objects using various arithmetics:
.. code-block:: python
>>> q0**numpy.arange(4)-q1**numpy.arange(3, -1, -1)
polynomial([-q1**3+1, -q1**2+q0, q0**2-q1, q0**3-1])
The constructed polynomials can be evaluated as needed:
.. code-block:: python
>>> poly = 3*q0+2*q1+1
>>> poly(q0=q1, q1=[1, 2, 3])
polynomial([3*q1+3, 3*q1+5, 3*q1+7])
Or manipulated using various numpy functions:
.. code-block:: python
>>> numpy.reshape(q0**numpy.arange(4), (2, 2))
polynomial([[1, q0],
[q0**2, q0**3]])
>>> numpy.sum(numpoly.monomial(13)[::3])
polynomial(q0**12+q0**9+q0**6+q0**3+1)
Installation should be straight forward from pip <https://pypi.org/>
_:
.. code-block:: bash
pip install numpoly
Alternatively, to get the most current experimental version, the code can be
installed from Github <https://github.com/>
_ as follows:
First time around, download the repository:
.. code-block:: bash
git clone git@github.com:jonathf/numpoly.git
Every time, move into the repository:
.. code-block:: bash
cd numpoly/
After the first time, you want to update the branch to the most current
version of master
:
.. code-block:: bash
git checkout master git pull
Install the latest version of numpoly
with:
.. code-block:: bash
pip install .
Installing numpoly
for development can
be done from the repository root with the command::
pip install -e .[dev]
The deployment of the code is done with Python 3.10 and dependencies are then fixed using::
pip install -r requirements-dev.txt
To run test:
.. code-block:: bash
pytest --doctest-modules numpoly test docs/user_guide/*.rst README.rst
To build documentation locally on your system, use make
from the doc/
folder:
.. code-block:: bash
cd doc/
make html
Run make
without argument to get a list of build targets. All targets
stores output to the folder doc/.build/html
.
Note that the documentation build assumes that pandoc
is installed on your
system and available in your path.