Arrowdantic is a small Python library backed by a mature Rust implementation of Apache Arrow that can interoperate with
For simple (but data-heavy) data engineering tasks, this package essentially replaces
pyarrow
: it supports reading from and writing to Parquet, Arrow at the same or
higher performance and higher safety (e.g. no segfaults).
Furthermore, it supports reading from and writing to ODBC compliant databases at
the same or higher performance than turbodbc
.
This package is particularly suitable for environments such as AWS Lambda - it takes 8M of disk space, compared to 82M taken by pyarrow.
import io
import arrowdantic as ad
original_arrays = [ad.UInt32Array([1, None])]
schema = ad.Schema(
[ad.Field(f"c{i}", array.type, True) for i, array in enumerate(original_arrays)]
)
data = io.BytesIO()
with ad.ParquetFileWriter(data, schema) as writer:
writer.write(ad.Chunk(original_arrays))
data.seek(0)
reader = ad.ParquetFileReader(data)
chunk = next(reader)
assert chunk.arrays() == original_arrays
import arrowdantic as ad
original_arrays = [ad.UInt32Array([1, None])]
schema = ad.Schema(
[ad.Field(f"c{i}", array.type, True) for i, array in enumerate(original_arrays)]
)
import io
data = io.BytesIO()
with ad.ArrowFileWriter(data, schema) as writer:
writer.write(ad.Chunk(original_arrays))
data.seek(0)
reader = ad.ArrowFileReader(data)
chunk = next(reader)
assert chunk.arrays() == original_arrays
import arrowdantic as ad
arrays = [ad.Int32Array([1, None]), ad.StringArray(["aa", None])]
with ad.ODBCConnector(r"Driver={SQLite3};Database=sqlite-test.db") as con:
# create an empty table with a schema
con.execute("DROP TABLE IF EXISTS example;")
con.execute("CREATE TABLE example (c1 INT, c2 TEXT);")
# insert the arrays
con.write("INSERT INTO example (c1, c2) VALUES (?, ?)", ad.Chunk(arrays))
# read the arrays
with con.execute("SELECT c1, c2 FROM example", 1024) as chunks:
assert chunks.fields() == [
ad.Field("c1", ad.DataType.int32(), True),
ad.Field("c2", ad.DataType.string(), True),
]
chunk = next(chunks)
assert chunk.arrays() == arrays
This package fully supports datetime and conversions between them and arrow:
import arrowdantic as ad
dt = datetime.datetime(
year=2021,
month=1,
day=1,
hour=1,
minute=1,
second=1,
microsecond=1,
tzinfo=datetime.timezone.utc,
)
a = ad.TimestampArray([dt, None])
assert (
str(a)
== 'Timestamp(Microsecond, Some("+00:00"))[2021-01-01 01:01:01.000001 +00:00, None]'
)
assert list(a) == [dt, None]
assert a.type == ad.DataType.timestamp(datetime.timezone.utc)