jpuigcerver / Laia

Laia: A deep learning toolkit for HTR based on Torch
MIT License
146 stars 57 forks source link
deep-learning htr torch

Laia: A deep learning toolkit for HTR

Build Status

Laia is a deep learning toolkit to transcribe handwritten text images.

If you find this toolkit useful in your research, please cite:

@misc{laia2016,
  author = {Joan Puigcerver and
            Daniel Martin-Albo and
            Mauricio Villegas},
  title = {Laia: A deep learning toolkit for HTR},
  year = {2016},
  publisher = {GitHub},
  note = {GitHub repository},
  howpublished = {\url{https://github.com/jpuigcerver/Laia}},
}

Installation

Laia is implemented in Torch, and depends on the following:

Note that currently we only support GPU. You need to use NVIDIA's cuDNN library. Register first for the CUDA Developer Program (it's free) and download the library from NVIDIA's website.

Once Torch is installed the following luarocks are required:

And execute luarocks install https://raw.githubusercontent.com/jpuigcerver/Laia/master/rocks/laia-scm-1.rockspec.

Installation via docker

To ease the installation, there is a public docker image for Laia. To use it first install docker and nvidia-docker, and configure docker so that it can be executed without requiring sudo, see docker linux postinstall. Then the installation of Laia consists of first pulling the image and tagging it as laia:active.

docker pull mauvilsa/laia:[SOME_TAG]
docker tag mauvilsa/laia:[SOME_TAG] laia:active

Replace SOME_TAG with one of the tags available here. Then copy the command line interface script to some directory in your path for easily use from the host.

mkdir -p $HOME/bin
docker run --rm -u $(id -u):$(id -g) -v $HOME:$HOME laia:active bash -c "cp /usr/local/bin/laia-docker $HOME/bin"

After this, all Laia commands can be executed by using the laia-docker command. For further details run.

laia-docker --help

Usage

Training a Laia model using CTC:

Create an "empty" model using:

laia-create-model \
    "$CHANNELS" "$INPUT_HEIGHT" "$((NUM_SYMB+1))" "$MODEL_DIR/model.t7";

Or if installed via docker:

laia-docker create-model \
    "$CHANNELS" "$INPUT_HEIGHT" "$((NUM_SYMB+1))" "$MODEL_DIR/model.t7";

Positional arguments:

For optional arguments check laia-create-model -h or laia-create-model -H.

Train the model using:

laia-train-ctc \
    "$MODEL_DIR/model.t7" \
    "$SYMBOLS_TABLE" \
    "$TRAIN_LST" "$TRAIN_GT" "$VALID_LST" "$VALID_GT";

Or if installed via docker:

laia-docker train-ctc \
    "$MODEL_DIR/model.t7" \
    "$SYMBOLS_TABLE" \
    "$TRAIN_LST" "$TRAIN_GT" "$VALID_LST" "$VALID_GT";

Positional arguments:

For optional arguments check laia-train-ctc -h or laia-create-model -H.

Transcribing

laia-decode "$MODEL_DIR/model.t7" "$TEST_LST";

Or if installed via docker:

laia-docker decode "$MODEL_DIR/model.t7" "$TEST_LST";

Positional arguments:

For optional arguments check laia-decode -h.

Example

For a more detailed example, see the Spanish Numbers README.md in egs/spanish-numbers folder, or the IAM README.md in egs/iam folder.