.. image:: https://badge.fury.io/py/astar.svg :target: https://badge.fury.io/py/astar
.. image:: https://github.com/jrialland/python-astar/actions/workflows/pythonpackage.yml/badge.svg :target: https://github.com/jrialland/python-astar/actions/workflows/pythonpackage.yml
.. image:: https://coveralls.io/repos/github/jrialland/python-astar/badge.svg?branch=master :target: https://coveralls.io/github/jrialland/python-astar?branch=master
.. image:: https://img.shields.io/github/stars/jrialland/python-astar :target: https://github.com/jrialland/python-astar
.. image:: https://img.shields.io/github/forks/jrialland/python-astar :target: https://github.com/jrialland/python-astar
This is a simple implementation of the a-star path finding algorithm <https://en.wikipedia.org/wiki/A*_search_algorithm>
__ in
python
The astar
module defines the AStar
class, which has to be inherited from
and completed with the implementation of several methods.
The functions take/return node objects.
The astar
library only requires the following property from these objects:
__hash__
).For the default implementation of is_goal_reached
, the objects must be
comparable for same-ness (i.e. implement __eq__
).
A simple way to achieve this, is to use simple objects based on strings,
floats, integers, tuples.
dataclass
objects declared with @dataclass(frozen=True)
directly implement __hash__
if possible.
neighbors
.. code:: py
@abstractmethod
def neighbors(self, node)
For a given node, returns (or yields) the list of its neighbors.
This is the method that one would provide in order to give to the
algorithm the description of the graph to use during for computation.
This method must be implemented in a subclass.
distance\_between
.. code:: py
@abstractmethod
def distance_between(self, n1, n2)
Gives the real distance/cost between two adjacent nodes n1 and n2 (i.e n2 belongs to the list of n1's neighbors). n2 is guaranteed to belong to the list returned by a call to neighbors(n1).
This method must be implemented in a subclass.
heuristic_cost_estimate
.. code:: py
@abstractmethod
def heuristic_cost_estimate(self, current, goal)
Computes the estimated (rough) distance/cost between a node and the
goal. The first argument is the start node, or any node that have been
returned by a call to the neighbors() method.
This method is used to give to the algorithm an hint about the node he
may try next during search.
This method must be implemented in a subclass.
is\_goal\_reached
.. code:: py
def is_goal_reached(self, current, goal)
This method shall return a truthy value when the goal is 'reached'. By
default it checks that current == goal
.
"Functional" API.
If you dislike to have to inherit from the AStar class and create an instance in order to run the algorithm, the module also provides a "find_path" function, which takes functions as parameters and provides reasonnable defaults for some of them.
See <https://github.com/jrialland/python-astar/blob/master/tests/basic/test_basic.py>
.. code:: py
def find_path(
start,
goal,
neighbors_fnct,
reversePath=False,
heuristic_cost_estimate_fnct = lambda a, b: Infinite,
distance_between_fnct = lambda a, b: 1.0,
is_goal_reached_fnct = lambda a, b: a == b
)
Examples
--------
Maze solver
This script generates an ascii maze, and finds the path between the upper left corner and the bottom right
PYTHONPATH=. python tests/maze/test_maze.py
::
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|#### | | | | | |
+--+# + + + + +--+--+--+ + +--+ +--+--+--+ +--+ + +
| ### | | | | | | | | | | | |
+ #+--+--+ + + +--+ +--+ + +--+--+ + +--+--+ +--+ +
| #| | | | | | | | | | | |
+ #+ +--+--+ + + +--+ +--+ + +--+--+ + + + + +--+
| #| | | | | | | | | | |
+ #+--+--+ + + +--+ +--+ + +--+--+ +--+--+--+--+--+ +
| # | | | | | | ### | | | | |
+ #+--+--+ + + + +--+--+--+--+ #+# + +--+ + +--+ + +
| # | | ####| ####|# | | | | | |
+ #+--+--+--+--+--+--+--+ #+ #+ #+--+# + + + +--+ + + +
| #| ####| #######| ####| ### | | | | |
+ #+--+ #+ #+--+--+ #+--+--+--+--+ #+--+ +--+--+--+ +--+--+
| ####| #| ##########| | ### | | ###### | |
+--+ #+ #+--+--+--+--+ +--+--+ +--+# +--+ #+--+# +--+--+ +
| | ####| | | |########| |##| ### | |
+ +--+--+ +--+ + +--+ +--+--+ +--+--+--+ + #+ #+# + +
| | | | | | | ####|#### |
+ +--+--+--+ + + + +--+ +--+--+--+--+--+ +--+--+--+# +
| | | | | | ####| | | ###### |
+ + +--+--+--+--+--+ + +--+--+##+ #+--+ +--+ + #+--+--+
| | | | | | ###### | ####| | ### | |
+ +--+ + +--+--+ +--+ + #+--+--+--+ #+--+--+--+--+# + +
| | | | | ###### | | ############ |# | |
+--+--+--+ + + +--+--+ +--+--+# + +--+--+--+--+# +# + +
| | | | | ###### | ##########| |#### | |
+ +--+ +--+--+ + +--+--+ #+--+--+ #+--+--+ #+ +--+--+ +
| | | | | ####| | #######| ############ |
+ +--+--+ + +--+ +--+ #+--+--+ + +--+ #+--+--+--+--+# +
| | | | | ####| ####| | #| ### | |##|
+--+--+ + +--+ + + #+--+ #+ #+--+--+ + #+ #+# + + + #+
| | | | | #######| ####| | #| #|# | | | #|
+ +--+ + + +--+--+--+--+--+--+ #+--+--+ #+ #+# +--+ + #+
| | | | | | #| ####| ####|# | | #|
+ + +--+ + + +--+--+--+--+ + #+ #+ #+--+--+# + + + #+
| | | | | | | | ####| ######### | | | #|
+ +--+ +--+ +--+--+ + + + +--+--+--+--+--+--+ +--+ #+
| | | | #|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
London Underground
This script finds the shortest path between two underground stations, based on a list of London's stations
``PYTHONPATH=. python tests/london/test_london_underground.py Chesham Beckton``
::
Chesham
Chalfont & Latimer
Chorleywood
Rickmansworth
Moor Park
Northwood
Northwood Hills
Pinner
North Harrow
Harrow-on-the-Hill
Northwick Park
Preston Road
Wembley Park
Finchley Road
Baker Street
Bond Street
Oxford Circus
Tottenham Court Road
Holborn
Chancery Lane
St. Paul's
Bank
Shadwell
Limehouse
Westferry
Poplar
Blackwall
East India
Canning Town
Royal Victoria
Custom House
Prince Regent
Royal Albert
Beckton Park
Cyprus
Gallions Reach
Beckton
TAN Network
A solution for a codingame's puzzle (https://www.codingame.com/training/hard/tan-network)
PYTHONPATH=. python tests/tan_network/test_tan_network_5.py
.. code:: sh
.
----------------------------------------------------------------------
Ran 1 test in 0.010s
OK