jsxlei / SCALE

Single-cell ATAC-seq analysis via Latent feature Extraction
MIT License
100 stars 19 forks source link

Stars PyPI Downloads

Single-Cell ATAC-seq analysis via Latent feature Extraction

News

2022.06.30 Introduce the highly_variable_genes from scanpy to filter peaks and support for input from multiomics data h5mu 2021.04 A new online integration tool SCALEX on scRNA-seq and scATAC-seq is available!
2021.01.14 Update to compatible with h5ad file and scanpy

Installation

SCALE neural network is implemented in Pytorch framework.
Running SCALE on CUDA is recommended if available.

install from PyPI

pip install scale

install latest develop version from GitHub

pip install git+https://github.com/jsxlei/SCALE.git

or download and install

git clone git://github.com/jsxlei/SCALE.git
cd SCALE
python setup.py install

Installation only requires a few minutes.

Quick Start

Input

Run

SCALE.py -d [input]

Output

Output will be saved in the output folder including:

Imputation

Get binary imputed data in adata.h5ad file using scanpy adata.obsm['binary'] with option --binary (recommended for saving storage)

SCALE.py -d [input] --binary  

or get numerical imputed data in adata.h5ad file using scanpy adata.obsm['imputed'] with option --impute

SCALE.py -d [input] --impute

Useful options

Help

Look for more usage of SCALE

SCALE.py --help 

Use functions in SCALE packages.

import scale
from scale import *
from scale.plot import *
from scale.utils import *

Running time

Tutorial

Tutorial Forebrain Run SCALE on dense matrix Forebrain dataset (k=8, 2088 cells)

Data availability

Reference

Lei Xiong, Kui Xu, Kang Tian, Yanqiu Shao, Lei Tang, Ge Gao, Michael Zhang, Tao Jiang & Qiangfeng Cliff Zhang. SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nature Communications, (2019).