my_pipeline
今までのコンペで使用してきたコードを集めたもの
How to install
pip install git+https://github.com/ju-ki/my_pipeline
Set up environment for tabular competition
from jukijuki.utils.logger import Logger
from jukijuki.utils.timer import Timer
from jukijuki.utils.util import create_folder, seed_everything
from jukijuki.validation.SturgesRuleStratifiedKFold import sturges_skf
from jukijuki.tabular.util import AbstractBaseBlock, WrapperBlock, run_blocks
from jukijuki.tabular.feature_engine import LabelEncodingBlock, CountEncodingBlock, AggregationBlock, OneHotEncodingBlock, CrossCategoricalFeatureBlock
from jukijuki.gb_model.model_lgbm import MyLGBMModel
from jukijuki.gb_model.model_xgboost import MyXGBModel
from jukijuki.gb_model.model_cat import MyCatModel
class Config:
competition_name = "hogehoge"
exp_name = "hoge"
target_col = "target"
seed = 42
n_fold = 5
create_folder(Config)
seed_everything(Config.seed)
logger = Logger(Config.log_dir, Config.exp_name)
Set up environment for image competition
from jukijuki.image.util import get_file_path
from jukijuki.utils.timer import Timer
from jukijuki.utils.logger import Logger
from jukijuki.utils.EarlyStopping import EarlyStopping
from jukijuki.utils.util import create_folder, seed_everything, get_device
from jukijuki.pytorch_model.util import get_optimizer, get_scheduler
class Config:
apex=False
competition_name = "hogehoge"
exp_name = "hoge"
target_col = "target"
batch_size = 32
num_workers = 4
size = 224
epochs = 8
model_name = "resnet34d"
optimizer_name = "AdamW"
scheduler = "CosineAnnealingLR"
T_max = epochs
lr = 1e-4
min_lr = 1e-6
weight_decay = 1e-6
gradient_accumulation_steps=1
max_grad_norm=1000
n_fold = 5
trn_fold = [0, 1, 2, ,3, 4]
seed = 42
target_size = 1
TRAIN = True
INFERENCE = False
DEBUG = True
create_folder(Config)
seed_everything(Config.seed)
device = get_device()
logger = Logger(Config.log_dir, Config.exp_name)
Set up environment for nlp competition
from jukijuki.nlp.util import get_tokenizer, get_max_lengths
from jukijuki.utils.timer import Timer
from jukijuki.utils.logger import Logger
from jukijuki.utils.EarlyStopping import EarlyStopping
from jukijuki.utils.util import create_folder, seed_everything, get_device
from jukijuki.nlp.pooler import AttentionPoolingV1, MeanPoolingV1
from jukijuki.pytorch_model.util import get_optimizer, get_scheduler
class Config:
apex=False
competition_name = "hogehoge"
exp_name = "hoge"
target_col = "target"
sentence_col = "hoge"
batch_size = 32
num_workers = 4
max_len = 250
epochs = 8
model_name = "roberta-base"
pool_name = "attention"
optimizer_name = "AdamW"
scheduler = "cosine"
T_max = epochs
lr = 1e-4
min_lr = 1e-6
weight_decay = 1e-6
gradient_accumulation_steps=1
max_grad_norm=1000
n_fold = 5
trn_fold = [0, 1, 2, 3, 4]
seed = 42
target_size = 1
batch_scheduler = True
TRAIN = True
INFERENCE = False
DEBUG = True
create_folder(Config)
seed_everything(Config.seed)
device = get_device()
tokenizer = get_tokenizer(Config)
logger = Logger(Config.log_dir, Config.exp_name)