See installation instructions.
See Results.
See Preparing Datasets for FastInst.
See Getting Started.
Name | Backbone | Epochs | Input | APval | AP | Params | GFlops | FPS (V100) | download |
---|---|---|---|---|---|---|---|---|---|
FastInst-D1 | R50 | 50 | 576 | 34.9 | 35.6 | 30M | 49.6 | 53.8 | model |
FastInst-D3 | R50 | 50 | 640 | 37.9 | 38.6 | 34M | 75.5 | 35.5 | model |
FastInst-D3 | R101 | 50 | 640 | 38.9 | 39.9 | 53M | 112.9 | 28.0 | model |
FastInst-D1 | R50-d-DCN | 50 | 576 | 37.4 | 38.0 | 30M | - | 47.8 | model |
FastInst-D3 | R50-d-DCN | 50 | 640 | 40.1 | 40.5 | 35M | - | 32.5 | model |
This document provides a brief intro of the usage of FastInst.
Please see Getting Started with Detectron2 for full usage.
python train_net.py --eval-only --num-gpus 4 --config-file config_path MODEL.WEIGHTS /path/to/checkpoint_file
for example, to evaluate our released the fastest model, you can copy the config path from the table, download the
pretrained checkpoint into /path/to/checkpoint_file
, and run
python train_net.py --eval-only --num-gpus 4 --config-file configs/coco/instance-segmentation/fastinst_R50_ppm-fpn_x1_576.yaml MODEL.WEIGHTS /path/to/checkpoint_file
which can reproduce the model.
eval-only
will train the model.
python train_net.py --num-gpus 4 --config-file config_path
R101
backbone, you need to
download and specify the path of the pretrained backbones
with MODEL.WEIGHTS /path/to/pretrained_checkpoint
. The download link can be found in the above table.
python train_net.py --num-gpus 4 --config-file config_path MODEL.WEIGHTS /path/to/pretrained_checkpoint
R50-d-DCN
backbone, you need to download and convert the pretrained backbones, and specify the path.
python tools/convert-timm-to-d2.py /path/to/resnet50d_ra2-464e36ba.pth /path/to/resnet50d_ra2-464e36ba.pkl
python train_net.py --num-gpus 4 --config-file config_path MODEL.WEIGHTS /path/to/resnet50d_ra2-464e36ba.pkl
FastInst is released under the MIT Licence.
If you find FastInst is useful in your research or applications, please consider giving us a star 🌟 and citing FastInst by the following BibTeX entry.
@article{he2023fastinst,
title={FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation},
author={He, Junjie and Li, Pengyu and Geng, Yifeng and Xie, Xuansong},
journal={arXiv preprint arXiv:2303.08594},
year={2023}
}
Sincerely thanks to these excellent opensource projects