jwiegley / category-theory

An axiom-free formalization of category theory in Coq for personal study and practical work
BSD 3-Clause "New" or "Revised" License
755 stars 70 forks source link
cartesian cartesian-closed-category categories category category-theory comonads construction coq functor monad monoid profunctor profunctor-composition

Category Theory in Coq

This development encodes category theory in Coq, with the primary aim being to allow representation and manipulation of categorical terms, as well realization of those terms in various target categories.

Usage

It is recommended to include this library in your developments by adding the following to your _CoqProject file:

-R <path to this library> Category

Then include the primary elements of the library using:

Require Import Category.Theory.

Library structure

This library is broken up into several major areas:

Programming sub-library

Within Theory.Coq there is now a sub-library that continues work started in the coq-haskell library. This sub-library is specifically aimed at "applied category theory" for programmers in the category of Coq types and functions. The aim is to mimic the utility of Haskell's monad hierarchy -- but for Coq users, similar to what ext-lib achieves. I've also adjusted a few of my notations to more closely match ext-lib.

Where this library differs, and what is considered the main contribution of this work, is that laws are not defined for these structures in the sub-library. Rather, the programmer establishs that her Monad is lawful by proving that a mapping exists from that definition into the general definition of monads (found in Theory.Monad) specialized to the category Coq. In this way the rest of the category-theory library is leveraged to discharge these proof obligations, while keeping the programmatic side as simple as possible.

For example, it is trivial to define the composition of two Applicatives. What is not so trivial is proving that this is truly an Applicative, based on that simple definition. While this proof was done in coq-haskell, it requires a bit of Ltac magic to keep the size down:

Program Instance Compose_ApplicativeLaws
  `{ApplicativeLaws F} `{ApplicativeLaws G} : ApplicativeLaws (F \o G).
Obligation 2. (* ap_composition *)
  (* Discharge w *)
  rewrite <- ap_comp; f_equal.
  (* Discharge v *)
  rewrite <- !ap_fmap, <- ap_comp.
  symmetry.
  rewrite <- ap_comp; f_equal.
  (* Discharge u *)
  apply_applicative_laws.
  f_equal.
  extensionality y.
  extensionality x.
  extensionality x0.
  rewrite <- ap_comp, ap_fmap.
  reflexivity.
Qed.

What's ill-gotten about this proof is that it's confined to the very specific case of Coq applicative endo-functors. However, there is a more general truth, which is that any two lax monoidal functors in any monoidal category also compose. So why not appeal to that proof to establish that our programmatic applicative in Coq is lawful by construction?

This is what the new sub-library does. Since the more general proof is already completed (and is too large to paste here), one may appeal to it directly to establish the desired fact:

(* The composition of two applicatives is itself applicative. We establish
   this by appeal to the general proofs that:

   1. every Coq functor has strength;
   2. (also, but not needed: any two strong functors compose to a strong
      functor; if it is a Coq functor it is known to have strength); and
   3. any two lax monoidal functors compose to a lax monoidal functor. *)

Theorem Compose_IsApplicative
  `(HF : EndoFunctor F)
  `(AF : @Functor.Applicative.Applicative _ _ (FromAFunctor HF))
  `(HG : EndoFunctor G)
  `(AG : @Functor.Applicative.Applicative _ _ (FromAFunctor HG)) :
  IsApplicative (Compose_IsFunctor HF HG)
    (@Compose_Applicative
       F HF (EndoApplicative_Applicative HF AF)
       G HG (EndoApplicative_Applicative HG AG)).
Proof.
  construct.
  - apply (@Compose_LaxMonoidalFunctor _ _ _ _ _ _ _ _ AF AG).
  - apply Coq_StrongFunctor.
Qed.

This proof pulls in several instances to establish that the category Coq is cartesian, closed, and thus closed monoidal, etc.

The hope is this will become a happy marriage of simple, useful computational constructions for Coq programmers, with relevant proof results from what category theory tells us about these structures in general, such as the above fact concerning composition of monoidal functors.

Duality

The core theory is defined in such a way that "the dual of the dual" is evident to Coq by mere simplification (that is, "C^op^op = C" follows by reflexivity for the opposite of the opposite of categories, functors, natural transformation, adjunctions, isomorphisms, etc.).

For this to be true, certain artificial constructions are necessary, such as repeating the associativity law for categories in symmetric form, and likewise the naturality condition of natural transformations. This repeats proof obligations when constructing these objects, but pays off in the ability to avoid repetition when stating the dual of whole structures.

As a result, the definition of comonads, for example, is reduced to one line:

Definition Comonad `{M : C ⟶ C} := @Monad (C^op) (M^op).

Most dual constructions are similarly defined, with the exception of Initial and Cocartesian structures. Although the core classes are indeed defined in terms of their dual construction, an alternate surface syntax and set of theorems is provided (for example, using a + b to indicate coproducts) to make life is a little less confusing for the reader. For instance, it follows from duality that 0 + X ≅ X is just 1 × X ≅ X in the opposite category, but using separate notations makes it easier to see that these two isomorphisms in the same category are not identical. This is especially important because Coq hides implicit parameters that would usually let you know duality is involved.

Design decisions

Some features and choices made in this library:

Notations

There are many notations used through the library, which are chosen in an attempt to make complex constructions appear familiar to those reading modern texts on category theory. Some of the key notations are:

Future directions

Computational Solver

There are some equivalences in category-theory that are very easily expressed and proven, but slow to establish in Coq using only symbolic term rewriting. For example:

(f ∘ g) △ (h ∘ i) ≈ split f h ∘ g △ i

This is solved by unfolding the definition of split, and then rewriting so that the fork operation (here given by ) absorbs the terms to its left, followed by observing the associativity of composition, and then simplify based on the universal properties of products. This is repeated several times until the prove is trivially completed.

Although this is easy to state, and even to write a tactic for, it can be extremely slow, especially when the types of the terms involved becomes large. A single rewrite can take several seconds to complete for some terms, in my experience.

The goal of this solver is to reify the above equivalence in terms of its fundamental operations, and then, using what we know about the laws of category theory, to compute the equivalence down to an equation on indices between the reduced terms. This is called computational reflection, and encodes the fact that our solution only depends on the categorical structure of the terms, and not their type.

That is, an incorrectly-built structure will simply fail to solve; but since we're reflecting over well-typed expressions to build the structure we pass to the solver, combined with a proof of soundness for that solver, we can know that solvable, well-typed, terms always give correct solutions. In this way, we transfer the problem to a domain without types, only indices, solve the structural problem there, and then bring the solution back to the domain of full types by way of the soundness proof.

Compiling to categories

Work has started in Tools/Abstraction for compiling monomorphic Gallina functions into "categorical terms" that can then be instantiated in any supporting target category using Coq's type class instance resolution.

This is as a Coq implementation of an idea developed by Conal Elliott, which he first implemented in and for Haskell. It is hoped that the medium of categories may provide a sound means for transporting Gallina terms into other syntactic domains, without relying on Coq's extraction mechanism.

License

This library is made available under the BSD-3-Clause license, a copy of which is included in the file LICENSE. Basically: you are free to use it for any purpose, personal or commercial (including proprietary derivates), so long as a copy of the license file is maintained in the derived work. Further, any acknowledgement referring back to this repository, while not necessary, is certainly appreciated.

John Wiegley