This is an implementation of Neural Processes for 1D-regression, accompanying my blog post.
The implementation uses TensorFlow in R:
Note: when changing network architecture, e.g. when fitting a new model, you need to run tf$reset_default_graph()
or restart your R session.
All experiments can be found in the "experiments" folder (where they appear in the same order as in the blog post):
a * sin(x)
.Loading all the libraries and helper functions
library(tidyverse)
library(tensorflow)
library(patchwork)
source("NP_architecture1.R")
source("NP_core.R")
source("GP_helpers.R")
source("helpers_for_plotting.R")
Setting up the NP model:
sess <- tf$Session()
# specify (global variables) for dimensionality of r, z, and hidden layers of g and h
dim_r <- 2L
dim_z <- 2L
dim_h_hidden <- 32L
dim_g_hidden <- 32L
# placeholders for training inputs
x_context <- tf$placeholder(tf$float32, shape(NULL, 1))
y_context <- tf$placeholder(tf$float32, shape(NULL, 1))
x_target <- tf$placeholder(tf$float32, shape(NULL, 1))
y_target <- tf$placeholder(tf$float32, shape(NULL, 1))
# set up NN
train_op_and_loss <- init_NP(x_context, y_context, x_target, y_target, learning_rate = 0.001)
# initialise
init <- tf$global_variables_initializer()
sess$run(init)
Now, sampling data according to the function y = a*sin(x),we can fit the model as follows:
n_iter <- 10000
for(iter in 1:n_iter){
# sample data (x_obs, y_obs)
N <- 20
x_obs <- runif(N, -3, 3)
a <- runif(1, -2, 2)
y_obs <- a * sin(x_obs)
# sample N_context for training
N_context <- sample(1:10, 1)
# use helper function to pick a random context set
feed_dict <- helper_context_and_target(x_obs, y_obs, N_context, x_context, y_context, x_target, y_target)
# optimisation step
a <- sess$run(train_op_and_loss, feed_dict = feed_dict)
if(iter %% 1e3 == 0){
cat(sprintf("loss = %1.3f\n", a[[2]]))
}
}
Prediction using the trained model:
# context set at prediction-time
x0 <- c(0, 1)
y0 <- 1*sin(x0)
# prediction grid
x_star <- seq(-4, 4, length=100)
# plot posterior draws
plot_posterior_draws(x0, y0, x_star, n_draws = 50)
Update (February 2019): The authors of the Neural Process papers have now made their implementation available here https://github.com/deepmind/neural-processes